Promising room temperature thermoelectric conversion efficiency of zinc-blende AgI from first principles

2020 ◽  
Vol 33 (1) ◽  
pp. 015501
Author(s):  
Pınar Bulut ◽  
Berna Beceren ◽  
Serbülent Yıldırım ◽  
Cem Sevik ◽  
Tanju Gürel
Author(s):  
Robert Freer ◽  
Dursun Ekren ◽  
Tanmoy Ghosh ◽  
Kanishka Biswas ◽  
Pengfei Qiu ◽  
...  

Abstract This paper presents tables of key thermoelectric properties, which define thermoelectric conversion efficiency, for a wide range of inorganic materials. The 12 families of materials included in these tables are primarily selected on the basis of well established, internationally-recognised performance and their promise for current and future applications: Tellurides, Skutterudites, Half Heuslers, Zintls, Mg-Sb Antimonides, Clathrates, FeGa3–type materials, Actinides and Lanthanides, Oxides, Sulfides, Selenides, Silicides, Borides and Carbides. As thermoelectric properties vary with temperature, data are presented at room temperature to enable ready comparison, and also at a higher temperature appropriate to peak performance. An individual table of data and commentary are provided for each family of materials plus source references for all the data.


2020 ◽  
Vol 8 (9) ◽  
pp. 4790-4799 ◽  
Author(s):  
Jing Jiang ◽  
Hangtian Zhu ◽  
Yi Niu ◽  
Qing Zhu ◽  
Shaowei Song ◽  
...  

Average ZT of near unity provides a competitive thermoelectric conversion efficiency of ∼12% at low temperature difference of 400 K.


2012 ◽  
Vol 26 (20) ◽  
pp. 1250132
Author(s):  
G. Y. YAO ◽  
G. H. FAN ◽  
J. H. MA ◽  
S. W. ZHENG ◽  
J. CHEN ◽  
...  

Using the first-principles method based on the density functional theory, we have calculated electronic structure of zinc blende AlN doped with 6.25% of V. The V dopants are found spin polarized and the calculated band structures suggest a 100% polarization of the conduction carriers. The ferromagnetic ground state in V-doped AlN can be explained in terms of double-exchange mechanism, and a Curie temperature above room temperature can be expected. These results suggest that the V-doped AlN may present a promising dilute magnetic semiconductor and find applications in the field of spintronics.


2019 ◽  
Author(s):  
Young-Kwang Jung ◽  
Joaquin Calbo ◽  
Ji-Sang Park ◽  
Lucy D. Wahlley ◽  
Sunghyun Kim ◽  
...  

Cs<sub>4</sub>PbBr<sub>6 </sub>is a member of the halide perovskite family that is built from isolated (zero-dimensional) PbBr<sub>6</sub><sup>4-</sup> octahedra with Cs<sup>+</sup> counter ions. The material exhibits anomalous optoelectronic properties: optical absorption and weak emission in the deep ultraviolet (310 - 375 nm) with efficient luminescence in the green region (~ 540 nm). Several hypotheses have been proposed to explain the giant Stokes shift including: (i) phase impurities; (ii) self-trapped exciton; (iii) defect emission. We explore, using first-principles theory and self-consistent Fermi level analysis, the unusual defect chemistry and physics of Cs<sub>4</sub>PbBr<sub>6</sub>. We find a heavily compensated system where the room-temperature carrier concentrations (< 10<sup>9</sup> cm<sup>-3</sup>) are more than one million times lower than the defect concentrations. We show that the low-energy Br-on-Cs antisite results in the formation of a polybromide (Br<sub>3</sub>) species that can exist in a range of charge states. We further demonstrate from excited-state calculations that tribromide moieties are photoresponsive and can contribute to the observed green luminescence. Photoactivity of polyhalide molecules is expected to be present in other halide perovskite-related compounds where they can influence light absorption and emission. <br>


Author(s):  
Young-Kwang Jung ◽  
Joaquin Calbo ◽  
Ji-Sang Park ◽  
Lucy D. Wahlley ◽  
Sunghyun Kim ◽  
...  

Cs<sub>4</sub>PbBr<sub>6 </sub>is a member of the halide perovskite family that is built from isolated (zero-dimensional) PbBr<sub>6</sub><sup>4-</sup> octahedra with Cs<sup>+</sup> counter ions. The material exhibits anomalous optoelectronic properties: optical absorption and weak emission in the deep ultraviolet (310 - 375 nm) with efficient luminescence in the green region (~ 540 nm). Several hypotheses have been proposed to explain the giant Stokes shift including: (i) phase impurities; (ii) self-trapped exciton; (iii) defect emission. We explore, using first-principles theory and self-consistent Fermi level analysis, the unusual defect chemistry and physics of Cs<sub>4</sub>PbBr<sub>6</sub>. We find a heavily compensated system where the room-temperature carrier concentrations (< 10<sup>9</sup> cm<sup>-3</sup>) are more than one million times lower than the defect concentrations. We show that the low-energy Br-on-Cs antisite results in the formation of a polybromide (Br<sub>3</sub>) species that can exist in a range of charge states. We further demonstrate from excited-state calculations that tribromide moieties are photoresponsive and can contribute to the observed green luminescence. Photoactivity of polyhalide molecules is expected to be present in other halide perovskite-related compounds where they can influence light absorption and emission. <br>


2021 ◽  
Author(s):  
Xianhao Zhao ◽  
Tianyu Tang ◽  
Quan Xie ◽  
like gao ◽  
Limin Lu ◽  
...  

The cesium lead halide perovskites are regarded as effective candidates for light-absorbing materials in solar cells, which have shown excellent performances in experiments such as promising energy conversion efficiency. In...


Carbon ◽  
2021 ◽  
Vol 176 ◽  
pp. 52-60
Author(s):  
Chunfeng Cui ◽  
Tao Ouyang ◽  
Chao Tang ◽  
Chaoyu He ◽  
Jin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document