scholarly journals Making high-quality quantum microwave devices with van der Waals superconductors

Author(s):  
Abhinandan Antony ◽  
Martin V. Gustafsson ◽  
Anjaly Rajendran ◽  
Avishai Benyamini ◽  
Guilhem Ribeill ◽  
...  

Abstract Ultra low-loss microwave materials are crucial for enhancing quantum coherence and scalability of superconducting qubits. Van der Waals (vdW) heterostructure is an attractive platform for quantum devices due to the single-crystal structure of the constituent two-dimensional (2D) layered materials and the lack of dangling bonds at their atomically sharp interfaces. However, new fabrication and characterization techniques are required to determine whether these structures can achieve low loss in the microwave regime. Here we report the fabrication of superconducting microwave resonators using NbSe$_2$ that achieve a quality factor $Q > 10^5$. This value sets an upper bound that corresponds to a resistance of $\leq 192 \mu\Omega$ when considering the additional loss introduced by integrating NbSe$_2$ into a standard transmon circuit. This work demonstrates the compatibility of 2D layered materials with high-quality microwave quantum devices.

2021 ◽  
Author(s):  
Abhinandan Antony ◽  
Martin Gustafsson ◽  
Guilhem Ribeill ◽  
Matthew Ware ◽  
Anjaly Rajendran ◽  
...  

Abstract Quantum computers can potentially achieve an exponential speedup versus classical computers on certain computational tasks, recently demonstrated in systems of superconducting qubits. However, the capacitor electrodes that comprise these qubits must be large in order to avoid lossy dielectrics. This tactic hinders scaling by increasing parasitic coupling among circuit components, degrading individual qubit addressability, and limiting the spatial density of qubits. Here, we take advantage of the unique properties of van der Waals (vdW) materials to reduce the qubit area by $>1000$ times while preserving the required capacitance without increasing substantial loss. Our qubits combine conventional aluminum-based Josephson junctions with parallel-plate capacitors composed of crystalline layers of superconducting niobium diselenide and insulating hexagonal-boron nitride. We measure a vdW transmon $T_1$ relaxation time of 1.06 $\mu$s, which demonstrates a path to achieve high-qubit-density quantum processors with long coherence times, and the broad utility of layered heterostructures in low-loss, high-coherence quantum devices.


Science ◽  
2020 ◽  
Vol 367 (6480) ◽  
pp. 903-906 ◽  
Author(s):  
Fang Liu ◽  
Wenjing Wu ◽  
Yusong Bai ◽  
Sang Hoon Chae ◽  
Qiuyang Li ◽  
...  

Two-dimensional materials from layered van der Waals (vdW) crystals hold great promise for electronic, optoelectronic, and quantum devices, but technological implementation will be hampered by the lack of high-throughput techniques for exfoliating single-crystal monolayers with sufficient size and high quality. Here, we report a facile method to disassemble vdW single crystals layer by layer into monolayers with near-unity yield and with dimensions limited only by bulk crystal sizes. The macroscopic monolayers are comparable in quality to microscopic monolayers from conventional Scotch tape exfoliation. The monolayers can be assembled into macroscopic artificial structures, including transition metal dichalcogenide multilayers with broken inversion symmetry and substantially enhanced nonlinear optical response. This approach takes us one step closer to mass production of macroscopic monolayers and bulk-like artificial materials with controllable properties.


2017 ◽  
Vol 4 (9) ◽  
pp. 1601054 ◽  
Author(s):  
Hao Hong ◽  
Can Liu ◽  
Ting Cao ◽  
Chenhao Jin ◽  
Shaoxin Wang ◽  
...  

2013 ◽  
Vol 1493 ◽  
pp. 213-217 ◽  
Author(s):  
S.F. Wang ◽  
W.K. Fong ◽  
W. Wang ◽  
K.K. Leung ◽  
C. Surya

ABSTRACTIn this paper we present systematic investigations on the growth of SnS van der Waals epitaxies (vdWEs) on different substrates, including crystalline and layered substrates, by molecular beam epitaxy (MBE). Experimental growth of SnS on conventional 3D substrates, such as GaAs, indicates strong interaction between the SnS layer and the substrate resulting in poor crystallinity in general. Substantial improvement in the film crystallinity can be obtained when the deposition is made on layered substrates, with saturated surface bonds, as observed in SnS films deposited on mica and crystalline substrates with a graphene buffer layer. Crystal size as large as one micron and rocking curve FWHM of 0.118° was observed despite the large lattice mismatches. This represents significant improvement over the reported value of ∼3°. Several symmetric growth orientations are observed for films grown on mica substrates. The results indicate that weak vdW interactions between the saturated bonds of the substrate surface and the SnS unit layer which is an important factor for achieving high quality epitaxy layered materials.


Nanoscale ◽  
2016 ◽  
Vol 8 (10) ◽  
pp. 5764-5770 ◽  
Author(s):  
Meenakshi Annamalai ◽  
Kalon Gopinadhan ◽  
Sang A. Han ◽  
Surajit Saha ◽  
Hye Jeong Park ◽  
...  

Our study shows that the surface energy of all 2D layered materials is undoubtedly dominated by London–van der Waals forces with little contribution from dipole–dipole interactions.


Nanoscale ◽  
2017 ◽  
Vol 9 (35) ◽  
pp. 13245-13256 ◽  
Author(s):  
Elton J. G. Santos ◽  
Declan Scullion ◽  
Ximo S. Chu ◽  
Duo O. Li ◽  
Nathan P. Guisinger ◽  
...  

Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance.


2D Materials ◽  
2016 ◽  
Vol 3 (2) ◽  
pp. 022001 ◽  
Author(s):  
Wenjing Zhang ◽  
Qixing Wang ◽  
Yu Chen ◽  
Zhuo Wang ◽  
Andrew T S Wee

2021 ◽  
Author(s):  
Lixiang Han ◽  
Mengmeng Yang ◽  
Peiting Wen ◽  
Wei Gao ◽  
nengjie huo ◽  
...  

One dimensional (1D)-two dimensional (2D) van der Waals (vdWs) mixed-dimensional heterostructures with advantages of atomically sharp interface, high quality and good compatibility have attracted tremendous attention in recent years. The...


Author(s):  
Luojun Du ◽  
Tawfique Hasan ◽  
Andres Castellanos-Gomez ◽  
Gui-Bin Liu ◽  
Yugui Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document