Quantitative and nondestructive determination of residual stress for SiO2 thin film by laser-generated surface acoustic wave technique

Author(s):  
Li Zhang ◽  
Xia Xiao ◽  
Haiyang Qi ◽  
Yiting Huang ◽  
Huiquan Qin

Abstract The laser-generated surface acoustic wave (SAW) technique is a promising method to measure the mechanical properties of thin films quickly and nondestructively. Residual stress is inevitable during the processing and manufacturing of integrated circuits, which will have a major impact on the physical and mechanical properties of the thin film materials and cause deterioration to the structural strength. In this study, the SAW technique based method is proposed for quantitative and nondestructive measuring the residual stress in the nanostructured films. The method is verified by the experiment measuring the SiO2 films in the thickness range of 100 to 2000 nm. The experimental procedures, including signal excitation, reception and processing, are described in detail. By matching the SAW experimental dispersion curve with the calculated theoretical dispersion curve containing the residual stress, the residual stress of the SiO2 films along [110] and [100] crystallographic orientation of the Si wafer is successfully quantified. The determination results are ranged from -65.5 to 421.1 MPa and the stress value increases as the film thickness decreases, revealing the residual stress of the SiO2 film is compressive. Meanwhile, the conventional substrate curvature method as a comparison is used to verify the correctness and feasibility of the proposed SAW method for the residual stress determination.

2007 ◽  
Vol 2007.13 (0) ◽  
pp. 207-208
Author(s):  
Megumi SASOU ◽  
Koji MIYAKE ◽  
Hideki TAKAGI ◽  
Ryutaro MAEDA ◽  
Shinya SASAKI

2008 ◽  
Author(s):  
A. Kabulski ◽  
V. R. Pagán ◽  
D. Cortes ◽  
R. Burda ◽  
O. M. Mukdadi ◽  
...  

Micromachines ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Alexander Kukaev ◽  
Dmitry Lukyanov ◽  
Denis Mikhailenko ◽  
Daniil Safronov ◽  
Sergey Shevchenko ◽  
...  

Originally, sensors based on surface acoustic waves are fabricated using photolithography, which becomes extremely expensive when a small series or even single elements are needed for the research. A laser thin film local evaporation technique is proposed to substitute the photolithography process in the production of surface acoustic wave based inertial sensors prototypes. To estimate its potential a prototype of a surface acoustic wave gyroscope sensing element was fabricated and tested. Its was shown that the frequency mismatch is no more than 1%, but dispersion of the wave on small inertial masses leads to a spurious parasitic signal on receiving electrodes. Possible ways of its neglecting is discussed.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Yanqi Wu ◽  
Alastair Stewart ◽  
Peter Vee-Sin Lee

Cellular mechanical properties (e.g. compressibility) are important biophysical markers in relation to cellular processes and functionality. Among the methods for cell mechanical measurement, acoustofluidic methods appear to be advantageous due...


2000 ◽  
Vol 657 ◽  
Author(s):  
Youngman Kim ◽  
Sung-Ho Choo

ABSTRACTThe mechanical properties of thin film materials are known to be different from those of bulk materials, which are generally overlooked in practice. The difference in mechanical properties can be misleading in the estimation of residual stress states in micro-gas sensors with multi-layer structures during manufacturing and in service.In this study the residual stress of each film layer in a micro-gas sensor was measured according to the five difference sets of film stacking structure used for the sensor. The Pt thin film layer was found to have the highest tensile residual stress, which may affect the reliability of the micro-gas sensor. For the Pt layer the changes in residual stress were measured as a function of processing variables and thermal cycling.


2013 ◽  
Vol 52 (7S) ◽  
pp. 07HD02 ◽  
Author(s):  
Fumiya Matsukura ◽  
Masato Uematsu ◽  
Keiko Hosaka ◽  
Shoji Kakio

Sign in / Sign up

Export Citation Format

Share Document