Bearing fault diagnosis using a speed-adaptive network based on vibro-speed data fusion and majority voting

Author(s):  
Zonghao Yuan ◽  
Zengqiang Ma ◽  
Li Xin ◽  
Dayong Gao ◽  
Fu Zhipeng

Abstract Fault diagnosis of rolling bearings is key to maintain and repair modern rotating machinery. Rolling bearings are usually working in non-stationary conditions with time-varying loads and speeds. Existing diagnosis methods based on vibration signals only don’ t have the ability to adapt to rotational speed. And when the load changes, the accuracy rate of them will be obviously reduced. A method is put forward which fuses multi-modal sensor signals to fit speed information. Firstly, the features are extracted from raw vibration signals and instantaneous rotating speed signals, and fused by 1D-CNN-based networks. Secondly, to improve the robustness of the model when the load changes, a majority voting mechanism is proposed in the diagnosis stage. Lastly, Multiple variable speed samples of four bearings under three loads are obtained to evaluate the performance of the proposed method by analyzing the loss function, accuracy rate and F1 score under different variable speed samples. It is empirically found that the proposed method achieves higher diagnostic accuracy and speed-adaptive ability than the algorithms based on vibration signal only. Moreover, A couple of ablation studies are also conducted to investigate the inner mechanism of the proposed speed-adaptive network.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Rui Yuan ◽  
Yong Lv ◽  
Gangbing Song

Rolling bearings are vital components in rotary machinery, and their operating condition affects the entire mechanical systems. As one of the most important denoising methods for nonlinear systems, local projection (LP) denoising method can be used to reduce noise effectively. Afterwards, high-order polynomials are utilized to estimate the centroid of the neighborhood to better preserve complete geometry of attractors; thus, high-order local projection (HLP) can improve noise reduction performance. This paper proposed an adaptive high-order local projection (AHLP) denoising method in the field of fault diagnosis of rolling bearings to deal with different kinds of vibration signals of faulty rolling bearings. Optimal orders can be selected corresponding to vibration signals of outer ring fault (ORF) and inner ring fault (IRF) rolling bearings, because they have different nonlinear geometric structures. The vibration signal model of faulty rolling bearing is adopted in numerical simulations, and the characteristic frequencies of simulated signals can be well extracted by the proposed method. Furthermore, two kinds of experimental data have been processed in application researches, and fault frequencies of ORF and IRF rolling bearings can be both clearly extracted by the proposed method. The theoretical derivation, numerical simulations, and application research can indicate that the proposed novel approach is promising in the field of fault diagnosis of rolling bearing.


2021 ◽  
Vol 2068 (1) ◽  
pp. 012034
Author(s):  
Hai Zeng ◽  
Ning Zeng ◽  
Jin Han ◽  
Yan Ding

Abstract Engine vibration signals include strong noise and non-stationary signals. By the time domain signal processing approach, it is hard to extract the failure features of engine vibration signals, so it is hard to identify engine failures. For improving the success rate of engine failure detection, an engine angle domain vibration signal model is established and an engine fault detection approach based on the signal model is proposed. The angle domain signal model reveals the modulation feature of the engine angular signal. The engine fault diagnosis approach based on the angle domain signal model involves equal angle sampling and envelope analysis of engine vibration signals. The engine bench test verifies the effectiveness of the engine fault diagnosis approach based on the angle domain signal model. In addition, this approach indicates a new path of engine fault diagnosis and detection.


2011 ◽  
Vol 143-144 ◽  
pp. 613-617
Author(s):  
Shuang Xi Jing ◽  
Yong Chang ◽  
Jun Fa Leng

Harmonic wavelet function, with the strict box-shaped characteristic of spectrum, has strong ability of identifying signal in frequency domain, and can extract weak components form vibration signals in frequency domain. Using harmonic wavelet analysis method, the selected frequency region and other frequency components of vibration signal of mine ventilator were decomposed into independent frequency bands without any over-lapping or leaking. Simulation and diagnosis example show that this method has good fault diagnosis effect, and the ventilator fault is diagnosed successfully.


Author(s):  
Bo Fang ◽  
Hu Jianzhong ◽  
Cheng Yang ◽  
Yudong Cao ◽  
Minping Jia

Abstract Blind deconvolution (BD) is an effective algorithm for enhancing the impulsive signature of rolling bearings. As a convex optimization problem, the existing BDs have poor optimization performance and cannot effectively enhance the impulsive signature excited by weak faults. Moreover, the existing BDs require manual derivation of the calculation process, which brings great inconvenience to the researcher's personalized design of the maximization criterion. A new BD algorithm based on backward automatic differentiation (BAD) is proposed, which is named BADBD. The calculation process does not require manual derivation so a general solution of BDs based on different maximization criteria is realized. BADBD constructs multiple cascaded filters to filter the raw vibration signal, which makes up for the deficiency of single filter performance. The filter coefficients are determined by Adam algorithm, which improves the optimization performance of the proposed BADBD. BADBD is compared with classic BDs by synthesized and real vibration signals. The results reveal superior capability of BADBD to enhance the impulsive signature and the fault diagnosis performance is significantly better than the classic BDs.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3105 ◽  
Author(s):  
Cong Dai Nguyen ◽  
Alexander Prosvirin ◽  
Jong-Myon Kim

The vibration signals of gearbox gear fault signatures are informative components that can be used for gearbox fault diagnosis and early fault detection. However, the vibration signals are normally non-linear and non-stationary, and they contain background noise caused by data acquisition systems and the interference of other machine elements. Especially in conditions with varying rotational speeds, the informative components are blended with complex, unwanted components inside the vibration signal. Thus, to use the informative components from a vibration signal for gearbox fault diagnosis, the noise needs to be properly distilled from the informational signal as much as possible before analysis. This paper proposes a novel gearbox fault diagnosis method based on an adaptive noise reducer–based Gaussian reference signal (ANR-GRS) technique that can significantly reduce noise and improve classification from a one-against-one, multiclass support vector machine (OAOMCSVM) for the fault types of a gearbox. The ANR-GRS processes the shaft rotation speed to access and remove noise components in the narrowbands between two consecutive sideband frequencies along the frequency spectrum of a vibration signal, enabling the removal of enormous noise components with minimal distortion to the informative signal. The optimal output signal from the ANR-GRS is then extracted into many signal feature vectors to generate a qualified classification dataset. Finally, the OAOMCSVM classifies the health states of an experimental gearbox using the dataset of extracted features. The signal processing and classification paths are generated using the experimental testbed. The results indicate that the proposed method is reliable for fault diagnosis in a varying rotational speed gearbox system.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Dan Ma ◽  
Yixiang Lu ◽  
Yushun Zhang ◽  
Hua Bao ◽  
Xueming Peng

In state analysis of rolling bearings using collaborative representation theory, how to construct an excellent redundant dictionary to collaboratively represent the acquired normal or abnormal data has been being a significant issue. Thus, a new method for fault detection and classification of rolling bearings is proposed in this paper. The proposed algorithm mainly consists of three components. First, a wavelet transform is employed to extract features, which takes advantage of the observation that vibration signals under different conditions have similar frequency spectra. This similarity ensures that we can collaboratively represent any test sample by using training samples. Second, under the similarity assumption, a dictionary pair learning strategy is employed to build an overcomplete dictionary pair, which is used to realize an optimal representation of the vibration signal. Meanwhile, the sparse constraint is also taken into account during dictionary training to enhance the robustness of the classification. Finally, the learned dictionary combined with collaborative representation is used to intelligently perform pattern classification of rolling bearings. The effectiveness and superiority of the method are verified by applying the proposed algorithm on the simulated and real vibration signals. The results show that, for different fault categories generated from different fault size and motor loads, our method can rapidly and accurately identify the fault category to which the input sample belongs.


Author(s):  
Xiaotong Tu ◽  
Yue Hu ◽  
Fucai Li

Vibration monitoring is an effective method for mechanical fault diagnosis. Wind turbines usually operated under varying-speed condition. Time-frequency analysis (TFA) is a reliable technique to handle such kind of nonstationary signal. In this paper, a new scheme, called current-aided TFA, is proposed to diagnose the planetary gearbox. This new technique acquires necessary information required by TFA from a current signal. The current signal is firstly used to estimate the rotating speed of the shaft. These parameters are applied to the demodulation transform to obtain a rough time-frequency distribution (TFD). Finally, the synchrosqueezing method further enhances the concentration of the obtained TFD. The validation and application of the proposed method are presented by a simulated signal and a vibration signal captured from a test rig.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Long Zhang ◽  
Binghuan Cai ◽  
Guoliang Xiong ◽  
Jianmin Zhou ◽  
Wenbin Tu ◽  
...  

Fault diagnosis of rolling bearings is not a trivial task because fault-induced periodic transient impulses are always submerged in environmental noise as well as large accidental impulses and attenuated by transmission path. In most hybrid diagnostic methods available for rolling bearings, the problems lie in twofolds. First, most optimization indices used in the individual signal processing stage do not take the periodical characteristic of fault transient impulses into consideration. Second, the individual stages make use of different optimization indices resulting in inconsistent optimization directions and possibly an unsatisfied diagnosis. To solve these problems, a multistage fault feature extraction method of consistent optimization for rolling bearings based on correlated kurtosis (CK) is proposed where maximum correlated kurtosis deconvolution (MCKD) is employed to attenuate the influence of transmission path followed by tunable Q factor wavelet transform (TQWT) to further enhance fault features by decomposing the preprocessed signals into multiple subbands under different Q values. The major contribution of the proposed approach is to consistently use CK as an optimization index of both MCKD and TQWT. The subband signal with the maximum CK which is an index being able to measure the periodical transient impulses in vibration signal yields an envelope spectrum, from which fault diagnosis is implemented. Simulated and experimental signals verified the effectiveness and advantages of the proposed method.


2017 ◽  
Vol 868 ◽  
pp. 363-368
Author(s):  
Bang Sheng Xing ◽  
Le Xu

For the situation that it is difficult to diagnose rolling bearings fault effectively for small samples, so it proposes a feature extraction method of rolling bearing based on local mean decomposition (LMD) energy feature. Due to the frequency domain distribution of vibration signals will change when different faults occur in rolling bearings, so it can use LMD energy feature method to extract the fault features of rolling bearings. The instances analysis and extracted results show that the LMD energy feature can extract the vibration signal fault feature of rolling bearings effectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jianfeng Zhang ◽  
Mingliang Liu ◽  
Keqi Wang ◽  
Laijun Sun

During the operation process of the high voltage circuit breaker, the changes of vibration signals can reflect the machinery states of the circuit breaker. The extraction of the vibration signal feature will directly influence the accuracy and practicability of fault diagnosis. This paper presents an extraction method based on ensemble empirical mode decomposition (EEMD). Firstly, the original vibration signals are decomposed into a finite number of stationary intrinsic mode functions (IMFs). Secondly, calculating the envelope of each IMF and separating the envelope by equal-time segment and then forming equal-time segment energy entropy to reflect the change of vibration signal are performed. At last, the energy entropies could serve as input vectors of support vector machine (SVM) to identify the working state and fault pattern of the circuit breaker. Practical examples show that this diagnosis approach can identify effectively fault patterns of HV circuit breaker.


Sign in / Sign up

Export Citation Format

Share Document