Quantum size confinement in gallium selenide nanosheets: band gap tunability versus stability limitation

2017 ◽  
Vol 28 (17) ◽  
pp. 175701 ◽  
Author(s):  
Daniel Andres-Penares ◽  
Ana Cros ◽  
Juan P Martínez-Pastor ◽  
Juan F Sánchez-Royo
2013 ◽  
Vol 1493 ◽  
pp. 281-286
Author(s):  
Keisuke Yoshimura ◽  
Tetsuya Hashimoto ◽  
Hiroshi Katsumata

ABSTRACTOptical band-gap and cathode luminescence (CL) properties of anatase TiO2 nanopowders mixed with γ- Al2O3 powders by planetary ball mill were evaluated as a function of a powder mass ratio (x=Al2O3/TiO2) of 0 to 0.5 and their correlation with XRD spectra was also investigated. The optical band-gap of TiO2 increased from 3.36 eV to 3.41eV with increasing milling time (tm) up to 600 min, which was in good agreement with the blue shifts observed in the CL spectra with increasing tm and it was interpreted as a quantum size effect. In addition, the optical band-gap of TiO2 powders mixed with Al2O3 with tm=60min greatly increased from 3.36 eV to 3.48 eV with increasing x up to x=0.5. On the other hand, the optical band-gap of all the powders was decreased by annealing at temperatures above 600°C, which was evidenced by the XRD spectra to be due to the growth of grain size.


1991 ◽  
Vol 256 ◽  
Author(s):  
Nobuyoshi Koshida ◽  
Hideki Koyama

ABSTRACTThe optoelectronic properties of porous Si (PS) are presented in terms of electroluminescence (EL), photoluminescence (PL), photoconduction (PC), and optical absorption. Observations of injection-type EL, efficient PL, band-gap widening, and photosensitivities In the visible region are consistent with the quantum size effect model in PS.


2016 ◽  
Vol 30 (10) ◽  
pp. 1650120 ◽  
Author(s):  
P. Guo ◽  
Y. W. Luo ◽  
Y. Jia

Based on hybrid functional calculations, the electronic structures and optical properties are investigated in the monolayer and bilayer tin dichalcogenides SnX2 (X = S and Se) nanosheets. Numerical results show that quantum size effects are obvious on the electronic structures and optical absorption in the SnS2 and SnSe2 nanosheets. The band gap values increase when the nanosheets layer numbers decrease. Moreover, for SnSe2 nanosheet, the optical absorption coefficients are high and its threshold values lie in the visible light activity range. These results are interesting and indicate that SnS2 and SnSe2 nanosheets may serve as the promising candidates for visible optical applications.


1973 ◽  
Vol 18 (1) ◽  
pp. 164-208 ◽  
Author(s):  
E. Mooser ◽  
M. Schlüter
Keyword(s):  
Band Gap ◽  

1988 ◽  
Vol 38 (8) ◽  
pp. 5726-5729 ◽  
Author(s):  
Shoji Furukawa ◽  
Tatsuro Miyasato

2017 ◽  
Vol 14 (1) ◽  
pp. 05-08 ◽  
Author(s):  
Suresh Kumar ◽  
J. K Sharma

This work presents a comprehensive study on the optical behavior of cadmium sulphide (CdS) nanoparticles under the effect of nickel (Ni2+ ions) doping. The pristine and Ni-doped CdS nanoparticles (CdS:Ni) have been synthesized via. conventional co-precipitation technique and analyzed using UV-visible spectrophotometer. Ni2+ ions with different concentrations (2% and 4%) incorporate in CdS structure, modify it and hence, exhibit a red shift of absorption edge. The increase in Ni2+ ions concentration from 0% to 4% leads to tailor the optical band gap of CdS from 2.70 eV to 2.47 eV. These band gap values are higher than that of bulk CdS which confirm a quantum size effect in the synthesized nanoparticles.


2020 ◽  
Vol 13 (06) ◽  
pp. 2051036
Author(s):  
Junjie Zhang ◽  
Hujiabudula Maimaitizi ◽  
Tao Zhang ◽  
Yalkunjan Tursun ◽  
Dilinuer Talifu ◽  
...  

In this work, a facile ultrasonic method for the fabrication of AgCl quantum dots (AgCl QDs) with an average diameter of about 2.5[Formula: see text]nm was reported for the first time. The material was analyzed by various techniques. In addition, effects of material’s size on its photocatalytic activities were studied. Results suggested that the AgCl QDs exhibited excellent photocatalytic activity to degrade Rhodamine B (RhB) and tetracycline (TC) under visible light illumination, and the degradation rate of RhB (TC) had reached up to 96.6% (72.2%) in 20 min, which was higher than that of AgCl nanoparticles (23[Formula: see text]nm) and AgCl nanospheres (114[Formula: see text]nm), respectively. Besides, the band gap of the material was increased when the size of material decreased from 23[Formula: see text]nm to 2.5[Formula: see text]nm. The significantly improved photocatalytic performance and increased band gap of AgCl QDs were mainly related to the quantum size effects of AgCl, which results in the more electron fluctuation in quantized energy levels and the lower recombination of electrons and holes.


2012 ◽  
Vol 198-199 ◽  
pp. 23-27
Author(s):  
Nan Zhang ◽  
Hong Sheng Zhao ◽  
Dong Yang ◽  
Wen Jie Yan

Based upon the density functional theory (DFT) in this paper, the first-principles approach is used to study the electronic structure of different cross-sectional diameters of ZnO [0001] nanowires of wurtzite structure. The results show that ZnO [0001] nanowires have a wide direct band gap. Located in the G-point of the Brillouin zone the conduction band minimum and valence band maximum are relatively smooth. The conduction band is mainly composed of Zn 4s and Zn 4p states, and the valence band is composed of Zn 3d and O 2p states. The effective mass of conduction band electrons and valence band holes are large while their mobility is very low which show that conductive ability of pure defect-free [0001] ZnO nanowires is weak. Along with the increase of the cross-sectional diameters, the band gap gradually decreases that indicates quantum size effects are obvious in the nano size range.


2013 ◽  
Vol 24 (20) ◽  
pp. 205701 ◽  
Author(s):  
Esteban Pedrueza ◽  
Alfredo Segura ◽  
Rafael Abargues ◽  
Jose Bosch Bailach ◽  
Jean Claude Chervin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document