Self-assembled Nano-Ag/Au@Au film composite SERS substrates show high uniformity and high enhancement factor for creatinine detection

2021 ◽  
Author(s):  
Ping Wen ◽  
Feng Yang ◽  
Chuang Ge ◽  
Shunbo Li ◽  
Yi Xu ◽  
...  
2015 ◽  
Vol 39 (4) ◽  
pp. 2839-2846 ◽  
Author(s):  
Elias de Barros Santos ◽  
Natiara Vaughn Madalossi ◽  
Fernando Aparecido Sigoli ◽  
Italo Odone Mazali

Plasmonic silver nanoparticles synthesized using citrus peel extracts exhibit SERS activity for different Raman probe molecules.


Chemosensors ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 327
Author(s):  
Panxue Wang ◽  
Yan Sun ◽  
Li Wang ◽  
Xiang Li ◽  
Miaomiao Liu ◽  
...  

Rapid and facile determination of pesticides is critically important in food and environmental monitoring. This study developed a self-assembled gold nanoparticle array based SERS method for highly specific and sensitive detection of acetamiprid, a neonicotinoid pesticide that used to be difficult in SERS analysis due to its low affinity with SERS substrates. SERS detection and quantification of acetamiprid was conducted with self-assembled gold nanoparticle arrays at the interface of chloroform and water as the enhancing substrate. Since targets dissolved in chloroform (organic phase) also have access to the hot-spots of Au NP array, the developed method exhibited good sensitivity and specificity for acetamiprid determination. Under the optimal conditions, SERS intensities at Raman shifts of 631 cm−1 and 1109 cm−1 displayed a good linear relationship with the logarithm concentration of acetamiprid in the range of 5.0 × 10−7 to 1.0 × 10−4 mol/L (0.11335 ppm to 22.67 ppm), with correlation coefficients of 0.97972 and 0.97552, respectively. The calculated LOD and LOQ of this method were 1.19 × 10−7 mol/L (0.265 ppb) and 2.63 × 10−7 mol/L (0.586 ppb), respectively, using SERS signal at 631 cm−1, and 2.95 × 10−7 mol/L (0.657 ppb) and 3.86 × 10−7 mol/L (0.860 ppb) using SERS signal at 1109 cm−1, respectively. Furthermore, the developed SERS method was successfully applied in determining acetamiprid on the surface of apple and spinach. This method offers an exciting opportunity for rapid detection of acetamiprid and other organic pesticides considering its advantages of simple preparation process, good specificity and sensitivity, and short detection time (within 1 h).


Nanoscale ◽  
2018 ◽  
Vol 10 (29) ◽  
pp. 14220-14229 ◽  
Author(s):  
Weidong Zhao ◽  
Shuyuan Xiao ◽  
Yuxian Zhang ◽  
Dong Pan ◽  
Jiahui Wen ◽  
...  

The BISA with high-density hot spots as reproducible SERS substrates by combining an opal structure with self-assembled monolayer AuNPs is demonstrated.


2019 ◽  
Vol 7 (33) ◽  
pp. 10179-10186 ◽  
Author(s):  
Weiwei Li ◽  
Lei Xiong ◽  
Nianci Li ◽  
Shuo Pang ◽  
Guoliang Xu ◽  
...  

We demonstrate tunable 3D light trapping (up to ∼96%) architectures based on the SnSe2 nanoplate arrays (NPAs) via self-assembled growth and high performance (EF: 6.33 × 106, LOD: 1 × 10−12 M) SERS substrates based on SnSe2 NPAs.


2020 ◽  
Vol 11 ◽  
pp. 1568-1576
Author(s):  
Jingran Zhang ◽  
Tianqi Jia ◽  
Xiaoping Li ◽  
Junjie Yang ◽  
Zhengkai Li ◽  
...  

Based on an electrochemical method, three-dimensional arrayed nanopore structures are machined onto a Mg surface. The structured Mg surface is coated with a thin gold (Au) film, which is used as a surface-enhanced Raman scattering (SERS) substrate. A rhodamine 6G (R6G) probe molecule is used as the detection agent for the SERS measurement. Different sizes of arrayed micro/nanostructures are fabricated by different treatment time using the electrochemical process. The topographies of these micro/nanostructures and the thickness of the Au film have an influence on the Raman intensity of the Mg substrate. Furthermore, when the thickness of Au film coating is held constant, the Raman intensity on the structured Mg substrates is about five times higher after a treatment time of 1 min when compared with other treatment times. The SERS enhancement factor ranges from 106 to 1.75 × 107 under these experimental conditions. Additionally, a 10−6 mol·L−1 solution of lysozyme was successfully detected using the Mg–Au nanopore substrates. Our low-cost method is reproducible, homogeneous, and suitable for the fabrication of SERS substrates.


2019 ◽  
Vol 10 ◽  
pp. 2483-2496
Author(s):  
Jingran Zhang ◽  
Tianqi Jia ◽  
Yongda Yan ◽  
Li Wang ◽  
Peng Miao ◽  
...  

Nanostructures have been widely employed in surface-enhanced Raman scattering (SERS) substrates. Recently, in order to obtain a higher enhancement factor at a lower detection limit, hierarchical structures, including nanostructures and nanoparticles, appear to be viable SERS substrate candidates. Here we describe a novel method integrating the nanoindentation process and chemical redox reaction to machine a hierarchical SERS substrate. The micro/nanostructures are first formed on a Cu(110) plane and then Ag nanoparticles are generated on the structured copper surface. The effect of the indentation process parameters and the corrosion time in the AgNO3 solution on the Raman intensities of the SERS substrate with hierarchical structures are experimentally studied. The intensity and distribution of the electric field of single and multiple Ag nanoparticles on the surface of a plane and with multiple micro/nanostructures are studied with COMSOL software. The feasibility of the hierarchical SERS substrate is verified using R6G molecules. Finally, the enhancement factor using malachite green molecules was found to reach 5.089 × 109, which demonstrates that the production method is a simple, reproducible and low-cost method for machining a highly sensitive, hierarchical SERS substrate.


2015 ◽  
Vol 748 ◽  
pp. 71-75
Author(s):  
Shi Li Liu ◽  
Zhi Qing Xin ◽  
Lu Hai Li

A simple and facile preparation approach of gold-silver nanoframes is described based on triangular silver nanoplates. HAuCl4was used as etching agent and added to boiling nanoplates suspension under stirring. Especially, when different concentrations of HAuCl4was employed, various etching happened and corresponding morphology of gold-silver nanoframes were acquired. The properties of nanoframes were characterized by scanning electron microscopy (SEM) and UV-vis spectra. Then the nanoframes were self-assembled onto the silicon treated with APTMS and used as SERS substrates for detecting p-ATP molecules. The results indicated that nanoframes showed better SERS effects than nanoplates.


2014 ◽  
Vol 605-606 ◽  
pp. 115-120 ◽  
Author(s):  
Francesca Pincella ◽  
Yeji Song ◽  
Takao Ochiai ◽  
Katsuhiro Isozaki ◽  
Kenji Sakamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document