scholarly journals Fabrication of nano/microstructures for SERS substrates using an electrochemical method

2020 ◽  
Vol 11 ◽  
pp. 1568-1576
Author(s):  
Jingran Zhang ◽  
Tianqi Jia ◽  
Xiaoping Li ◽  
Junjie Yang ◽  
Zhengkai Li ◽  
...  

Based on an electrochemical method, three-dimensional arrayed nanopore structures are machined onto a Mg surface. The structured Mg surface is coated with a thin gold (Au) film, which is used as a surface-enhanced Raman scattering (SERS) substrate. A rhodamine 6G (R6G) probe molecule is used as the detection agent for the SERS measurement. Different sizes of arrayed micro/nanostructures are fabricated by different treatment time using the electrochemical process. The topographies of these micro/nanostructures and the thickness of the Au film have an influence on the Raman intensity of the Mg substrate. Furthermore, when the thickness of Au film coating is held constant, the Raman intensity on the structured Mg substrates is about five times higher after a treatment time of 1 min when compared with other treatment times. The SERS enhancement factor ranges from 106 to 1.75 × 107 under these experimental conditions. Additionally, a 10−6 mol·L−1 solution of lysozyme was successfully detected using the Mg–Au nanopore substrates. Our low-cost method is reproducible, homogeneous, and suitable for the fabrication of SERS substrates.

2017 ◽  
Vol 8 ◽  
pp. 2271-2282 ◽  
Author(s):  
Jingran Zhang ◽  
Yongda Yan ◽  
Peng Miao ◽  
Jianxiong Cai

Using the tip-based continuous indentation process, arrays of three-dimensional pyramidal cavities have been successfully machined on a copper template and the structures were successfully transferred to a polydimethylsiloxane (PDMS) surface using a reverse nanoimprinting approach. The structured PDMS surface is coated with a thin Au film, and the final substrate is demonstrated as a surface-enhanced Raman spectroscopy (SERS) substrate. Rhodamine 6G (R6G) was used as a probe molecule in the present study to confirm the SERS measurements. Arrays of micro/nanostructures of different dimensions were formed by the overlap of pyramidal cavities with different adjacent distances using the tip-based continuous indentation process. The effects of the reverse nanoimprinting process and coating process on the final topography of the structures are studied. The experimental results show that the Raman intensity of the Au-film-coated PDMS substrate is influenced by the topography of the micro/nanostructures and by the thickness of the Au film. The Raman intensity of 1362 cm−1 R6G peak on the structured Au-film-coated PDMS substrate is about 8 times higher than the SERS tests on a commercial substrate (Q-SERS). A SERS enhancement factor ranging from 7.5 × 105 to 6 × 106 was achieved using the structured Au-film-coated PDMS surface, and it was demonstrated that the method proposed in this paper is reliable, replicable, homogeneous and low-cost for the fabrication of SERS substrates.


NANO ◽  
2017 ◽  
Vol 12 (05) ◽  
pp. 1750052 ◽  
Author(s):  
Xiuhua Li ◽  
Jian Lin ◽  
Junhong Zhao

A novel composite nanostructure which is made up of TiO2 three dimensionally ordered macroporous (3DOM) nanostructure and TiO2 nanorods (NRs) has been successfully synthesized through a combination of colloidal crystal template technology and hydrothermal method, then we achieved its combination with Ag nanoparticles (NPs) via a silver mirror reaction. We studied the SERS (Surface-Enhanced Raman Scattering) performance of the obtained structure, the results show that our samples are very sensitive substrates when being used to detect dye R6G molecules, with a low detection concentration of 10[Formula: see text] M. This proves that it is a promising material in the area of analyzing and molecule-level detecting as a kind of novel and low-cost SERS substrate.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Kristina Gudun ◽  
Zarina Elemessova ◽  
Laura Khamkhash ◽  
Ekaterina Ralchenko ◽  
Rostislav Bukasov

We introduce low-cost, tunable, hybrid SERS substrate of commercial gold nanoparticles on untreated aluminum foil (AuNPs@AlF). Two or three AuNP centrifugation/resuspension cycles are proven to be critical in the assay preparation. The limits of detection (LODs) for 4-nitrobenzenethiol (NBT) and crystal violet (CV) on this substrate are about 0.12 nM and 0.19 nM, respectively, while maximum analytical SERS enhancement factors (AEFs) are about 107. In comparative assays LODs for CV measured on AuNPs@Au film and AuNPs@glass are about 0.35 nM and 2 nM, respectively. The LOD for melamine detected on AuNPs@ Al foil is 27 ppb with 3 orders of magnitude for linear response range. Overall, AuNPs@AlF demonstrated competitive performance in comparison with AuNPs@ Au film substrate in SERS detection of CV, NBT, and melamine. To check the versatility of the AuNPs@AlF substrate we also detected KNO3 with LODs of 0.7 mM and SERS EF around 2 × 103, which is on the same order with SERS EF reported for this compound in the literature.


RSC Advances ◽  
2019 ◽  
Vol 9 (38) ◽  
pp. 21771-21776 ◽  
Author(s):  
Nan Zhao ◽  
Hefu Li ◽  
Cunwei Tian ◽  
Yanru Xie ◽  
Zhenbao Feng ◽  
...  

Three-dimensional (3D) plasmonic structures have been intensively investigated as high performance surface enhanced Raman scattering (SERS) substrates.


2019 ◽  
Vol 10 ◽  
pp. 2483-2496
Author(s):  
Jingran Zhang ◽  
Tianqi Jia ◽  
Yongda Yan ◽  
Li Wang ◽  
Peng Miao ◽  
...  

Nanostructures have been widely employed in surface-enhanced Raman scattering (SERS) substrates. Recently, in order to obtain a higher enhancement factor at a lower detection limit, hierarchical structures, including nanostructures and nanoparticles, appear to be viable SERS substrate candidates. Here we describe a novel method integrating the nanoindentation process and chemical redox reaction to machine a hierarchical SERS substrate. The micro/nanostructures are first formed on a Cu(110) plane and then Ag nanoparticles are generated on the structured copper surface. The effect of the indentation process parameters and the corrosion time in the AgNO3 solution on the Raman intensities of the SERS substrate with hierarchical structures are experimentally studied. The intensity and distribution of the electric field of single and multiple Ag nanoparticles on the surface of a plane and with multiple micro/nanostructures are studied with COMSOL software. The feasibility of the hierarchical SERS substrate is verified using R6G molecules. Finally, the enhancement factor using malachite green molecules was found to reach 5.089 × 109, which demonstrates that the production method is a simple, reproducible and low-cost method for machining a highly sensitive, hierarchical SERS substrate.


2020 ◽  
Vol 30 (4) ◽  
pp. 345
Author(s):  
Bich Ngoc Nguyen Thi ◽  
Viet Ha Chu ◽  
Thi Thuy Nguyen ◽  
Trong Nghia Nguyen ◽  
Hong Nhung Tran

A flexible low-cost paper-based surface enhanced Raman scattering (SERS) substrate was successfully manufactured by a direct chemical reduction of silver nanoparticles (AgNPs) onto a common commercially available filter paper. Characterization of fabricated paper-based SERS substrate and the influences of the silver nitrate concentration, type of paper on SERS signal were systematically investigated. In order to fabricate SERS substrates with the highest quality, a suitable one from four different types of filter papers was chosen. The prepared SERS substrates have capability for detecting food toxic chemicals. The test of detecting melamine in aqueous solution was successfully demonstrated with the limit of detection for melamine is 10-7M.


2019 ◽  
Vol 80 (5) ◽  
pp. 961-969 ◽  
Author(s):  
Diego Domingos Pereira de Sousa ◽  
Camila Ferreira Pinto ◽  
Marquele Amorim Tonhela ◽  
Ana Claudia Granato ◽  
Artur de Jesus Motheo ◽  
...  

Abstract The efficiency of electrolysis (EC/Cl2) and photo-assisted electrolysis (EC/UV/Cl2) methods, in the presence of chloride, for the abatement of real dairy waste from a producer in the Triangulo Mineiro region of Brazil, was evaluated. A complete 23 factorial design was performed for the variables time, pH and current. After determining the ideal pH, a Central Compound Design (CCD) was performed, where the applied current (533.42 mA) and treatment time (60.45 minutes) were maximized. The effluent was subsequently submitted to prolonged EC/Cl2 and EC/UV/Cl2 treatment in order to evaluate the behaviour of specific environmental parameters over time. The EC/UV/Cl2 method was more efficient than simple EC/Cl2 treatment. The EC/UV/Cl2 method resulted in a reduction of all environmental parameters investigated to levels within legal standards for effluent discharge. A relatively low cost of treatment is obtained with Energy per Order (EEO) values of 0.89 and 1.22 kWh m−3 order−1 for the EC/UV/Cl2 and EC/Cl2 treatments, respectively. The electrochemical production of free chlorine species followed by subsequent photolysis and production of radical species can convert a simple electrochemical process into an advanced oxidation process (AOP).


Author(s):  
Torstein Yddal ◽  
Sandy Cochran ◽  
Odd Helge Gilja ◽  
Michiel Postema ◽  
Spiros Kotopoulis

AbstractStudying the effects of ultrasound on biological cells requires extensive knowledge of both the physical ultrasound and cellular biology. Translating knowledge between these fields can be complicated and time consuming. With the vast range of ultrasonic equipment available, nearly every research group uses different or unique devices. Hence, recreating the experimental conditions and results may be expensive or difficult. For this reason, we have developed devices to combat the common problems seen in state-of-the-art biomedical ultrasound research. In this paper, we present the design, fabrication, and characterisation of an open-source device that is easy to manufacture, allows for parallel sample sonication, and is highly reproducible, with complete acoustic calibration. This device is designed to act as a template for sample sonication experiments. We demonstrate the fabrication technique for devices designed to sonicate 24-well plates and OptiCell™ using three-dimensional (3D) printing and low-cost consumables. We increased the pressure output by electrical impedance matching of the transducers using transmission line transformers, resulting in an increase by a factor of 3.15. The devices cost approximately €220 in consumables, with a major portion attributed to the 3D printing, and can be fabricated in approximately 8 working hours. Our results show that, if our protocol is followed, the mean acoustic output between devices has a variance of <1%. We openly provide the 3D files and operation software allowing any laboratory to fabricate and use these devices at minimal cost and without substantial prior know-how.


2021 ◽  
Author(s):  
Jun Dong ◽  
Yan Wang ◽  
Qianying Wang ◽  
Yi Cao ◽  
qingyan han ◽  
...  

Abstract Surface-enhanced Raman scattering (SERS) is recognized as one of the most favored techniques for enhancing Raman signals. The morphology of the SERS substrate profoundly affects molecular Raman spectra. This study aimed to construct a ring-mounted nanostructured substrate via liquid–liquid two-phase self-assembly (LLSA) incorporated with anodic aluminum oxide (AAO) membrane transfer techniques. High-density nanoparticles (NPs) assembled on AAO membranes were ascribed to reduce the diameters of the nanopores, with Au–Ag alloy NPs to regulate the dielectric constant so as to reveal the local surface plasmon resonance tunability. SERS engineered in this way allowed for the fabrication of a ring-mounted nanostructured substrate where the distribution density of NPs and dielectric constant could be independently fine-tuned. High SERS activity of the substrate was revealed by detecting the enhanced factor of crystal violet and rhodamine 6G molecules, which was up to 1.56 × 106. Moreover, SERS of thiram target molecules confirmed the supersensitivity and repeatability of the substrate as a practical application. The results of this study manifested a low-cost but high-efficiency ring-mounted nanostructured SERS substrate that might be suitable in many fields, including biosensing, medical research, environmental monitoring, and optoelectronics.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2862 ◽  
Author(s):  
Huixiang Wu ◽  
Xiangcheng Sun ◽  
Changjun Hou ◽  
Jingzhou Hou ◽  
Yu Lei

In this study, two new quasi-three-dimensional Surface Enhanced Raman Scattering (SERS) substrates, namely porous Ag and Ag-NiO nanofibrous mats, were prepared using a simple, electrospinning-calcination, two-step synthetic process. AgNO3/polyvinyl pyrrolidone (PVP) and AgNO3/Ni(NO3)2/PVP composites serving as precursors were electrospun to form corresponding precursory nanofibers. Porous Ag and Ag-NiO nanofibers were successfully obtained after a 3-h calcination at 500 °C under air atmosphere, and analyzed using various material characterization techniques. Synthesized, quasi-three-dimensional porous Ag and Ag-NiO nanofibrous mats were applied as SERS substrates, to measure the model compound Rhodamine 6G (R6G), and investigate the corresponding signal enhancement. Furthermore, porous Ag and Ag-NiO nanofibrous mats were employed as SERS substrates for melamine and methyl parathion respectively. Sensitive detection of melamine and methyl parathion was achieved, indicating their feasibility as an active SERS sensing platform, and potential for food safety and environmental monitoring. All the results suggest that the electrospinning-calcination, two-step method offers a new, low cost, high performance solution in the preparation of SERS substrates.


Sign in / Sign up

Export Citation Format

Share Document