High-performance ternary organic photovoltaics with NC70BA as the third component material enabling thickness-insensitive photoactive performance

2021 ◽  
Author(s):  
Zhiyong Liu ◽  
Hong-En Wang

Abstract In this work, a thinner (100 nm) and thicker (150 nm and 200 nm) ternary organic photovoltaic (OPV) are fabricate by D18 as donor, Y6 as acceptor and NC70BA as third component materials. The addition of the hollow 3D spherical structure of NC70BA into D18:Y6 binary films is helpful for improving phase separation and smooth surface of ternary photoactive layer, and form more continuous electron transport channels in ternary photoactive layers. It is enhance photovoltaic performance under not only thinner photoactive layer thickness but also thicker photoactive layer thickness. Our results demonstrate the feasibility of employing D18:Y6 as a binary photovoltaic layer and fullerene derivative NC70BA as a third component material and has construct high-efficiency thickness-insensitive ternary OPVs; this approach would promote the development of thicker photoactive layer ternary OPVs to fulfil the requirements of solution coating processes.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ruimin Zhou ◽  
Zhaoyan Jiang ◽  
Chen Yang ◽  
Jianwei Yu ◽  
Jirui Feng ◽  
...  

AbstractThe high efficiency all-small-molecule organic solar cells (OSCs) normally require optimized morphology in their bulk heterojunction active layers. Herein, a small-molecule donor is designed and synthesized, and single-crystal structural analyses reveal its explicit molecular planarity and compact intermolecular packing. A promising narrow bandgap small-molecule with absorption edge of more than 930 nm along with our home-designed small molecule is selected as electron acceptors. To the best of our knowledge, the binary all-small-molecule OSCs achieve the highest efficiency of 14.34% by optimizing their hierarchical morphologies, in which the donor or acceptor rich domains with size up to ca. 70 nm, and the donor crystals of tens of nanometers, together with the donor-acceptor blending, are proved coexisting in the hierarchical large domain. All-small-molecule photovoltaic system shows its promising for high performance OSCs, and our study is likely to lead to insights in relations between bulk heterojunction structure and photovoltaic performance.


2015 ◽  
Vol 3 (44) ◽  
pp. 22274-22279 ◽  
Author(s):  
Qian Zhang ◽  
Bin Kan ◽  
Xiangjian Wan ◽  
Hua Zhang ◽  
Feng Liu ◽  
...  

The thickness dependence of the photovoltaic performance for devices based on the small molecule DR3TSBDT:PC71BM was systematically investigated and the power conversion efficiencies are found to be relatively insensitive to the thickness.


2014 ◽  
Vol 2 (48) ◽  
pp. 20889-20895 ◽  
Author(s):  
Makoto Karakawa ◽  
Takabumi Nagai ◽  
Kenji Adachi ◽  
Yutaka Ie ◽  
Yoshio Aso

Novel [60]fulleropyrrolidine derivatives were synthesized and evaluated based on device performance. TheN-phenyfulleropyrrolidines showed better photovoltaic performance than theN-alkyl derivatives and showed high PCE up to 7.3% on combination with PTB7.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Md. Shahiduzzaman ◽  
Mohammad Ismail Hossain ◽  
Sem Visal ◽  
Tetsuya Kaneko ◽  
Wayesh Qarony ◽  
...  

AbstractThe photovoltaic performance of perovskite solar cells (PSCs) can be improved by utilizing efficient front contact. However, it has always been a significant challenge for fabricating high-quality, scalable, controllable, and cost-effective front contact. This study proposes a realistic multi-layer front contact design to realize efficient single-junction PSCs and perovskite/perovskite tandem solar cells (TSCs). As a critical part of the front contact, we prepared a highly compact titanium oxide (TiO2) film by industrially viable Spray Pyrolysis Deposition (SPD), which acts as a potential electron transport layer (ETL) for the fabrication of PSCs. Optimization and reproducibility of the TiO2 ETL were discreetly investigated while fabricating a set of planar PSCs. As the front contact has a significant influence on the optoelectronic properties of PSCs, hence, we investigated the optics and electrical effects of PSCs by three-dimensional (3D) finite-difference time-domain (FDTD) and finite element method (FEM) rigorous simulations. The investigation allows us to compare experimental results with the outcome from simulations. Furthermore, an optimized single-junction PSC is designed to enhance the energy conversion efficiency (ECE) by > 30% compared to the planar reference PSC. Finally, the study has been progressed to the realization of all-perovskite TSC that can reach the ECE, exceeding 30%. Detailed guidance for the completion of high-performance PSCs is provided.


2020 ◽  
Vol 8 (43) ◽  
pp. 22572-22592
Author(s):  
Jinru Cao ◽  
Fuqiang Du ◽  
Linqiang Yang ◽  
Weihua Tang

The design of dithieno[3,2-b:2′,3′-d]pyrrole (DTP) based FREAs and dopant-free HTMs for record high power conversion efficiency and stable solar cells is updated to give insightful view on material design and device strategies to boast photovoltaic performance.


2018 ◽  
Vol 11 (12) ◽  
pp. 3463-3471 ◽  
Author(s):  
Kuan Liu ◽  
Shuang Chen ◽  
Jionghua Wu ◽  
Huiyin Zhang ◽  
Minchao Qin ◽  
...  

A fullerene derivative C9 with anchoring hydroxyl groups on the long side chain is used to modify the surface of SnO2 in planar heterojunction perovskite solar cells, which exhibit high efficiency up to 21.3% with negligible hysteresis and good device stability.


2016 ◽  
Vol 11 (9) ◽  
pp. 764
Author(s):  
Lella Aicha Ayadi ◽  
Nihel Neji ◽  
Hassen Loukil ◽  
Mouhamed Ali Ben Ayed ◽  
Nouri Masmoudi

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1640
Author(s):  
Massimiliano Lanzi ◽  
Debora Quadretti ◽  
Martina Marinelli ◽  
Yasamin Ziai ◽  
Elisabetta Salatelli ◽  
...  

A new side-chain C60-fullerene functionalized thiophene copolymer bearing tributylphosphine-substituted hexylic lateral groups was successfully synthesized by means of a fast and effective post-polymerization reaction on a regioregular ω-alkylbrominated polymeric precursor. The growth of the polymeric intermediate was followed by NMR spectrometry in order to determine the most convenient reaction time. The obtained copolymer was soluble in water and polar solvents and was used as a photoactive layer in single-material organic photovoltaic (OPV) solar cells. The copolymer photovoltaic efficiency was compared with that of an OPV cell containing a water-soluble polythiophenic homopolymer, functionalized with the same tributylphosphine-substituted hexylic side chains, in a blend with a water-soluble C60-fullerene derivative. The use of a water-soluble double-cable copolymer made it possible to enhance the control on the nanomorphology of the active blend, thus reducing phase-segregation phenomena, as well as the macroscale separation between the electron acceptor and donor components. Indeed, the power conversion efficiency of OPV cells based on a single material was higher than that obtained with the classical architecture, involving the presence of two distinct ED and EA materials (PCE: 3.11% vs. 2.29%, respectively). Moreover, the synthetic procedure adopted to obtain single material-based cells is more straightforward and easier than that used for the preparation of the homopolymer-based BHJ solar cell, thus making it possible to completely avoid the long synthetic pathway which is required to prepare water-soluble fullerene derivatives.


Sign in / Sign up

Export Citation Format

Share Document