Correlation between morphology and local mechanical and electrical properties of van der Waals heterostructures

2021 ◽  
Author(s):  
Borislav Vasic ◽  
Uros Ralevic ◽  
Sonja Aškrabić ◽  
Davor Čapeta ◽  
Marko Kralj

Abstract Properties of van der Waals (vdW) heterostructures strongly depend on the quality of the interface between two dimensional (2D) layers. Instead of having atomically flat, clean, and chemically inert interfaces without dangling bonds, top-down vdW heterostructures are associated with bubbles and intercalated layers (ILs) which trap contaminations appeared during fabrication process. We investigate their influence on local electrical and mechanical properties of MoS2/WS2 heterostructures using atomic force microscopy (AFM) based methods. It is demonstrated that domains containing bubbles and ILs are locally softer, with increased friction and energy dissipation. Since they prevent sharp interfaces and efficient charge transfer between 2D layers, electrical current and contact potential difference are strongly decreased. In order to reestablish a close contact between MoS2 and WS 2 layers, vdW heterostructures were locally flattened by scanning with AFM tip in contact mode or just locally pressed with an increased normal load. Subsequent electrical measurements reveal that the contact potential difference between two layers strongly increases due to enabled charge transfer, while local I/V curves exhibit increased conductivity without undesired potential barriers.

2001 ◽  
Vol 7 (S2) ◽  
pp. 864-865
Author(s):  
S Kitamura ◽  
K Suzuki ◽  
C B Mooney

The scanning Kelvin probe force microscope (SKPM) is a member of the scanning probe microscope (SPM) family, and was derived from the non-contact atomic force microscope (NCAFM) technique. The contact potential difference (CPD) originating from the work function difference between the tip and sample surfaces can be measured using SKPM with simultaneous observation of the topography image. Using SKPM the surface of semiconductor device has been observed to measure the dopant concentration as the CPD difference in two dimensions. Most of the SKPM measurements are acquired in the atmosphere. The lateral resolution is achieved less than 100 nm.On the other hand, Scanning capacitance microscope (SCM) of contact mode is now most popular method to measure the dopant concentration in semiconductor device. However, the lateral resolution of SCM is limited, because of the fact that the contact mode cannot achieve a true atomic resolution, the fact that the capacitance is measured through the insulating layer on surface, and the fact that the tip and sample is damaged by the high electric field to be applied between the tip and sample. So SCM never achieves the atomic level resolution.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1506
Author(s):  
Huan Fei Wen ◽  
Yasuhiro Sugawara ◽  
Yan Jun Li

We studied the O2 dissociated state under the different O2 exposed temperatures with atomic resolution by scanning probe microscopy (SPM) and imaged the O adatom by simultaneous atomic force microscopy (AFM)/scanning tunneling microscopy (STM). The effect of AFM operation mode on O adatom contrast was investigated, and the interaction of O adatom and the subsurface defect was observed by AFM/STM. Multi-channel exploration was performed to investigate the charge transfer between the adsorbed O and the TiO2(110) by obtaining the frequency shift, tunneling current and local contact potential difference at an atomic scale. The tunneling current image showed the difference of the tunneling possibility on the single O adatom and paired O adatoms, and the local contact potential difference distribution of the O-TiO2(110) surface institutively revealed the charge transfer from TiO2(110) surface to O adatom. The experimental results are expected to be helpful in investigating surface/interface properties by SPM.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1803
Author(s):  
Zhen Zheng ◽  
Junyang An ◽  
Ruiling Gong ◽  
Yuheng Zeng ◽  
Jichun Ye ◽  
...  

In this work, we report the same trends for the contact potential difference measured by Kelvin probe force microscopy and the effective carrier lifetime on crystalline silicon (c-Si) wafers passivated by AlOx layers of different thicknesses and submitted to annealing under various conditions. The changes in contact potential difference values and in the effective carrier lifetimes of the wafers are discussed in view of structural changes of the c-Si/SiO2/AlOx interface thanks to high resolution transmission electron microscopy. Indeed, we observed the presence of a crystalline silicon oxide interfacial layer in as-deposited (200 °C) AlOx, and a phase transformation from crystalline to amorphous silicon oxide when they were annealed in vacuum at 300 °C.


2009 ◽  
Vol 20 (26) ◽  
pp. 264012 ◽  
Author(s):  
S A Burke ◽  
J M LeDue ◽  
Y Miyahara ◽  
J M Topple ◽  
S Fostner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document