scholarly journals Multi-Channel Exploration of O Adatom on TiO2(110) Surface by Scanning Probe Microscopy

Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1506
Author(s):  
Huan Fei Wen ◽  
Yasuhiro Sugawara ◽  
Yan Jun Li

We studied the O2 dissociated state under the different O2 exposed temperatures with atomic resolution by scanning probe microscopy (SPM) and imaged the O adatom by simultaneous atomic force microscopy (AFM)/scanning tunneling microscopy (STM). The effect of AFM operation mode on O adatom contrast was investigated, and the interaction of O adatom and the subsurface defect was observed by AFM/STM. Multi-channel exploration was performed to investigate the charge transfer between the adsorbed O and the TiO2(110) by obtaining the frequency shift, tunneling current and local contact potential difference at an atomic scale. The tunneling current image showed the difference of the tunneling possibility on the single O adatom and paired O adatoms, and the local contact potential difference distribution of the O-TiO2(110) surface institutively revealed the charge transfer from TiO2(110) surface to O adatom. The experimental results are expected to be helpful in investigating surface/interface properties by SPM.

2010 ◽  
Vol 1258 ◽  
Author(s):  
Oleg Kononenko ◽  
S I Bozhko ◽  
V N Matveev ◽  
V T Volkov ◽  
M A Knyazev ◽  
...  

AbstractPd is widely used in producing electrodes to single-walled carbon nanotubes (SWNT). However up to now its ability to form ohmic contacts to SWNTs was not employed in scanning probe microscopy (SPM). Here we present a study of SWNTs with Pd electrodes by SPM using Pd-coated tips. SWNTs were selectively grown on oxidized silicon substrates by low pressure CVD method. Pd electrodes were prepared to SWNTs to fabricate two terminal structures for SWNTs resistance measurements. It is shown that SPM Kelvin mode is a reliable technique for SWNT detection on insulating substrate. Contact potential difference between Pd electrode and SWNT is measured using the Kelvin mode.


2017 ◽  
Vol 28 (10) ◽  
pp. 105704 ◽  
Author(s):  
Huan Fei Wen ◽  
Yan Jun Li ◽  
Eiji Arima ◽  
Yoshitaka Naitoh ◽  
Yasuhiro Sugawara ◽  
...  

2009 ◽  
Vol 20 (26) ◽  
pp. 264012 ◽  
Author(s):  
S A Burke ◽  
J M LeDue ◽  
Y Miyahara ◽  
J M Topple ◽  
S Fostner ◽  
...  

2001 ◽  
Vol 7 (S2) ◽  
pp. 130-131
Author(s):  
Buddy D. Ratner ◽  
Reto Luginbühll ◽  
Rene Overney ◽  
Michael Garrison ◽  
Thomas Boland

Although scanning probe microscopy (SPM) can generate images of surface topography, this class of techniques is exceptionally valuable in its ability to provide quantitative and chemically specific information about biomaterial surfaces with high spatial definition. Since engineered biomaterials are designed to deliver chemically defined information, often arrayed in specific geometries, tools that can characterize such materials are needed.A few years ago, we demonstrated how the atomic force microscope (AFM) could precisely distinguish between each of the four nucleotide bases that comprise DNA, measure the nucleotide-nucleotide force of interaction and spatially localize that information on a surface (1). in particular, we found that the nucleotide bases could self-assemble on gold. The assembly process was imaged using scanning tunneling microscopy (STM) and this led to an understanding of the structure of the assembled film. The assembled film structure was further characterized using electron spectroscopy for chemical analysis (ESCA) and secondary ion mass spectrometry (SIMS).


2012 ◽  
Vol 1465 ◽  
Author(s):  
Fernando G. Tobias ◽  
Anna Gawedzka ◽  
Max S. Goldmeier ◽  
Alexandra C. Sakols ◽  
Emina A. Stojković ◽  
...  

ABSTRACTBacteriophytochromes (Bphs) are red-light photoreceptors found in photosynthetic and non-photosynthetic bacteria that have been engineered into infrared fluorescent protein markers. Bphs are composed of a photosensory module that is covalently linked to an effector/regulatory module, usually a histidine kinase (HK) domain. Light-induced, global structural changes are proposed to originate within the covalently attached biliverdin chromophore, a linear tetrapyrrole, and propagate through the protein. Bphs undergo reversible photoconversion between two distinct red and far-red light absorbing states, denoted Pr and Pfr respectively. For most Bphs, Pr is the dark-adapted state. The energy dissipated during Pr/Pfr photoconversion is proposed to directly impact the infrared fluorescence quantum yield. At this time, only structures of three different Bphs have been published, all of truncated proteins in their respective dark-adapted states. We have utilized scanning probe microscopy (SPM) to investigate the structure of intact Bphs in the light-adapted state in order to gain new insight into the mechanism of photoconversion and fluorescence. Scanning tunneling microscopy (STM) analysis of a pair of Bphs from photosynthetic bacterium R. palustris, RpBphP2 (P2) and RpBphP3 (P3) in their light-adapted states is presented in these proceedings. The concentration of the depositing protein has a key role in the molecular arrangements observed on the highly-ordered pyrolytic graphite (HOPG) surface. For example, at a high protein concentration, a hexagonal lattice of Bphs is observed by STM on a HOPG surface. Upon dilution, the photoreceptors self-organize into fiber-like structures on the surface. In these fibers, the dimer interface and the individual domains of the Bphs can be assigned and directly compared to a structural model of the intact, full-length proteins. In summary, SPM has potential to be an effective method for gaining new insight into Bph structure and dynamics.


1992 ◽  
Vol 61 (21) ◽  
pp. 2595-2597 ◽  
Author(s):  
G. B. Amisola ◽  
R. Behrensmeier ◽  
J. M. Galligan ◽  
F. A. Otter ◽  
F. Namavar ◽  
...  

1998 ◽  
Vol 4 (S2) ◽  
pp. 522-523
Author(s):  
S. Magonov

The evolution of scanning tunneling microscopy (STM) into atomic force microscopy (AFM) have led to a family of scanning probe techniques which are widely applied in fundamental research and in industry. Visualization of the atomic- and molecular-scale structures and the possibility of modifying these structures using a sharp probe were demonstrated with the techniques on many materials. These unique capabilities initiated the further development of AFM and related methods generalized as scanning probe microscopy (SPM). The first STM experiments were performed in the clean conditions of ultra-high vacuum and on well-defined conducting or semi-conducting surfaces. These conditions restrict SPM applications to the real world that requires ambient-condition operation on the samples, many of which are insulators. AFM, which is based on the detection of forces between a tiny cantilever carrying a sharp tip and a sample surface, was introduced to satisfy these requirements. High lateral resolution and unique vertical resolution (angstrom scale) are essential AFM features.


Author(s):  
Darrell H. Reneker ◽  
Rajkumari Patil ◽  
Seog J. Kim ◽  
Vladimir Tsukruk

Scanning probe microscopy techniques, particularly atomic force microscopy (AFM) and scanning tunneling microscopy (STM) are finding a rapidly growing number of applications to both synthetic and biological polymers. Segments of individual polymer molecules can often be observed with atom scale resolution. Observation of polymeric objects as large as 100 microns with nanometer resolution is possible with contemporary AFM, although features caused by the convolution of the shape of the sample and the shape of the tip must be recognized and properly interpreted. The vertical resolution of the atomic force microscope readily provides precise data about the heights of molecules, crystals, and other objects.Lamellar crystals of polyethylene are well characterized objects with many features which can be observed with scanning probe microscopes. Figure 1 shows the fold surface near a fold domain boundary of a lamellar crystal of polyethylene, as observed with an AFM. The folded chain crystal is about 15 nm thick.


Sign in / Sign up

Export Citation Format

Share Document