Numerical and experimental study of a compressive-mode energy harvester under random excitations

2017 ◽  
Vol 26 (3) ◽  
pp. 035064 ◽  
Author(s):  
H T Li ◽  
Z Yang ◽  
J Zu ◽  
W Y Qin
2021 ◽  
Vol 272 ◽  
pp. 115366
Author(s):  
J.R. Leppe-Nerey ◽  
M.E. Nicho ◽  
F.Z. Sierra-Espinosa ◽  
F. Hernández-Guzmán ◽  
M. Fuentes-Pérez

2014 ◽  
Vol 644-650 ◽  
pp. 3560-3563
Author(s):  
Yu Liu ◽  
Xiao Yan He ◽  
Shen Liu ◽  
Ying Wu ◽  
Yi Ou

A single resonance frequency is the main factor of limiting vibration energy collector efficiency. In this paper, the multi degree of freedom oscillation adjusting bandwidth scheme is reported, designing a kind of new broadband vibration energy harvester, which has multi-mode energy acquisition, multi freedom vibration and broadband characteristics. Firstly, Broadband energy collector structure design. Secondly, Combining with the main vibration form, using the ANSYS carried out a detailed analysis of its working model. Finally, designing the prototype and doing some experimental verification, the results show that the designed energy collector with low frequency and wideband energy acquisition performance, the frequency domain of energy collection is 57.6 to 69.45HZ ,which break through the bottleneck of traditional single resonance frequency of energy acquisition, has a high value of theory and engineering application.


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Shilong Sun ◽  
Xiao Zhang

This paper presents a folded nonlinear electro-magneto-mechanical (EMM) vibration-based piezoelectric energy harvester system, which is built on the cantilevered beam structure and consists of one host beam and two substrate plates. The performance of the linearity and nonlinearity to the proposed EMM system is evaluated and compared. Moreover, the voltage response in time history and the phase portrait are studied under an external rectifier circuit with a resistor. The results show that the nonlinearity of the reported EMM system changes the coherent resonance vibration mode from single to double under a harmonic base excitation within the frequency range of 20 Hz–50 Hz. Meanwhile, the substrate plate D contributes more averaged voltage output at a lower frequency while the substrate plate A contributes the voltage output at the relatively higher frequency for the nonlinear EMM system. The experimental study indicates that the proposed nonlinear EMM vibration-based piezoelectric energy harvester can yield a total voltage of 8.133 [email protected] Hz while the baseline structure only produces 1.724 [email protected] Hz. In addition, the bandwidth range of high-power output is enlarged by the nonlinear EMM system, which makes this device more flexible and applicable to absorb the wasted vibration energy generated by industrial machines and public facilities.


Sign in / Sign up

Export Citation Format

Share Document