scholarly journals Theoretical and Experimental Study of Nonlinear and Electro-Magneto-Mechanical-Based Piezoelectric Vibration Energy Harvester

2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Shilong Sun ◽  
Xiao Zhang

This paper presents a folded nonlinear electro-magneto-mechanical (EMM) vibration-based piezoelectric energy harvester system, which is built on the cantilevered beam structure and consists of one host beam and two substrate plates. The performance of the linearity and nonlinearity to the proposed EMM system is evaluated and compared. Moreover, the voltage response in time history and the phase portrait are studied under an external rectifier circuit with a resistor. The results show that the nonlinearity of the reported EMM system changes the coherent resonance vibration mode from single to double under a harmonic base excitation within the frequency range of 20 Hz–50 Hz. Meanwhile, the substrate plate D contributes more averaged voltage output at a lower frequency while the substrate plate A contributes the voltage output at the relatively higher frequency for the nonlinear EMM system. The experimental study indicates that the proposed nonlinear EMM vibration-based piezoelectric energy harvester can yield a total voltage of 8.133 [email protected] Hz while the baseline structure only produces 1.724 [email protected] Hz. In addition, the bandwidth range of high-power output is enlarged by the nonlinear EMM system, which makes this device more flexible and applicable to absorb the wasted vibration energy generated by industrial machines and public facilities.

2021 ◽  
pp. 1-31
Author(s):  
Xiang Zhao ◽  
Weidong Zhu ◽  
Ying-hui Li

Abstract Vibration energy harvesting problems have strongly developed in recent years. However, many researchers just consider bending vibration models of energy harvesters. As a matter of fact, torsional vibration is also important and cannot be ignored in many cases. In this work, closed-form solutions of bending-torsion coupled forced vibrations of a piezoelectric energy harvester subjected to a fluid vortex are derived. Timoshenko beam model is used for modeling the energy harvester, and the extended Hamilton's principle is used in the modeling process. Since piezoelectric effects in both bending and torsional directions are considered, two kinds of electric coupling effects appear in forced vibration equations, and a new model for the electric circuit equation is developed. Lamb-Oseen vortex model is considered in this study. Both the external aerodynamic force and moment are simple harmonic loads. Three damping coefficients are considered in the present model. Based on Green's function method, closed-form solutions of the piezoelectric energy harvester subjected to the water vortex are derived. Some published results are used to verify the present solutions. It can be concluded through analysis that when torsional vibration is considered, the bandwidth of the high energy area of the voltage becomes large, and the bending-torsion coupled vibration energy harvester can produce more power than a transverse vibration energy harvester.


2014 ◽  
Vol 953-954 ◽  
pp. 655-658 ◽  
Author(s):  
Guang Qing Shang ◽  
Hong Bing Wang ◽  
Chun Hua Sun

Energy harvesting system has become one of important areas of ​​research and develops rapidly. How to improve the performance of the piezoelectric vibration energy harvester is a key issue in engineering applications. There are many literature on piezoelectric energy harvesting. The paper places focus on summarizing these literature of mathematical modeling of piezoelectric energy harvesting, ranging from the linear to nonlinear, from early a single mechanical degree to piezoaeroelastic problems.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Shan Gao ◽  
Hongrui Ao ◽  
Hongyuan Jiang

Abstract Piezoelectric vibration energy harvesting technology has attracted significant attention for its applications in integrated circuits, microelectronic devices, and wireless sensors due to high power density, easy integration, simple configuration, and other outstanding features. Among piezoelectric vibration energy harvesting structures, the cantilevered beam is one of the simplest and most commonly used structures. In this work, a vertically staggered rectangle-through-holes (VS-RTH) cantilevered model is proposed, which focuses on the multi-directional vibration collection. To verify the output performance of the device, this paper employs basic materials and fabrication methods with mathematical modeling. The simulations are conducted through finite element methods to discuss the properties of VS-RTH energy harvester on resonant frequency and output characteristics. Besides, an energy storage circuit is adopted as a collection system. It can achieve a maximum voltage of 4.5 V which is responded to the harmonic vibrating input of 1 N force and 1 m/s2 in a single vibrating direction. Moreover, the power density is 2.596 W/cm3 with a 100 kΩ resistor. It is almost four times better than the output of unidirectional cantilever beam with similar resonant frequency and volume. According to the more functionality in the applications, VS-RTH energy harvester can be used in general vibration acquisition of machines and vehicles. Except for electricity storage, the harvester can potentially employ as a sensor to monitor the diversified physical signals for smooth operation and emergence reports. Looking forward, the VS-RTH harvester renders an effective approach toward decomposing the vibration directions in the environment for further complicating vibration applications.


Author(s):  
M. H. Ansari ◽  
M. Amin Karami

A three dimensional piezoelectric vibration energy harvester is designed to generate electricity from heartbeat vibrations. The device consists of several bimorph piezoelectric beams stacked on top of each other. These horizontal bimorph beams are connected to each other by rigid vertical beams making a fan-folded geometry. One end of the design is clamped and the other end is free. One major problem in micro-scale piezoelectric energy harvesters is their high natural frequency. The same challenge is faced in development of a compact vibration energy harvester for the low frequency heartbeat vibrations. One way to decrease the natural frequency is to increase the length of the bimorph beam. This approach is not usually practical due to size limitations. By utilizing the fan-folded geometry, the natural frequency is decreased while the size constraints are observed. The required size limit of the energy harvester is 1 cm by 1 cm by 1 cm. In this paper, the natural frequencies and mode shapes of fan-folded energy harvesters are analytically derived. The electro-mechanical coupling has been included in the model for the piezoelectric beam. The design criteria for the device are discussed.


Author(s):  
Onur Bilgen ◽  
S. Faruque Ali ◽  
Michael I. Friswell ◽  
Grzegorz Litak ◽  
Marc de Angelis

An inverted cantilevered beam vibration energy harvester with a tip mass is evaluated for its electromechanical efficiency and power output capacity in the presence of pure harmonic, pure random and various combinations of harmonic and random base excitation cases. The energy harvester employs a composite piezoelectric material device that is bonded near the root of the beam. The tip mass is used to introduce non-linearity to the system by inducing buckling in some configurations and avoiding it in others. The system dynamics include multiple solutions and jumps between the potential wells, and these are exploited in the harvesting device. This configuration exploits the non-linear properties of the system using base excitation in conjunction with the tip mass at the end of the beam. Such nonlinear device has the potential to work well when the input excitation does not have a dominant harmonic component at a fixed frequency. The paper presents an extensive experimental analysis, results and interesting conclusions derived directly from the experiments supported by numerical simulations.


2014 ◽  
Vol 23 (4) ◽  
pp. 855-861 ◽  
Author(s):  
Licheng Deng ◽  
Zhiyu Wen ◽  
Xingqiang Zhao ◽  
Chengwei Yuan ◽  
Guoxi Luo ◽  
...  

Author(s):  
Shan Gao ◽  
Hongrui Ao ◽  
Hongyuan Jiang

Abstract Piezoelectric vibration energy harvesting technology has attracted significant attention for its applications in integrated circuits, microelectronic devices and wireless sensors due to high power density, easy integration, simple configuration and other outstanding features. Among piezoelectric vibration energy harvesting structures, cantilevered beam is one of the simplest and most commonly used structures. In this work, a vertically staggered rectangle-through-holes (VS-RTH) cantilevered model of mesoscale piezoelectric energy harvester is proposed, which focuses on the multi-directional vibration collection and low resonant frequency. To verify the output performances of the device, this paper employs basic materials and fabrication methods with mathematical modeling. The simulations are conducted through finite element methods to discuss the properties of VS-RTH energy harvester on resonant frequency and output characteristics. Besides, an energy storage circuit with high power collection rate is adopted as collection system. This harvester is beneficial to the further application of devices working with continuous vibrations and low power requirements.


Author(s):  
M. R. Awal ◽  
◽  
M. Jusoh ◽  
T. Sabapathy ◽  
R. B. Ahmad ◽  
...  

This paper presents a pattern less piezoelectric harvester for ultra low power energy applications. Usually patterned cantilevers are used as vibration energy harvester which results additional fabrication process. Hence, to reduce the process, a four layer cantilever configuration is used to design the harvester with Aluminum, Silicon and Zinc Oxide. The device dimension is settled to 12×10×≈0.5009 mm3 with ≈300 nm deposition thickness for each layer. The modeling and fabrication processes are demonstrated in detail. The induced voltage by the cantilever is obtained through the analytical and practical measurements. From the measurements, it is found that, the maximum induced voltage is 91.2 mV from practical measurement with voltage density of 1.517 mV/mm3. It is evident from the results that, this pattern less model can be useful for next generation vibration energy harvester with simpler technology.


Sign in / Sign up

Export Citation Format

Share Document