PVA/glycerol-based lenticular microlens array with tunable focal length depending on electric field polarization effect

2019 ◽  
Vol 28 (4) ◽  
pp. 045007
Author(s):  
Xiaomin Song ◽  
Dongyang Li ◽  
Dagong Jia ◽  
Yubao Sun ◽  
Hongxia Zhang ◽  
...  
2013 ◽  
Vol 31 (11) ◽  
pp. 2097-2121 ◽  
Author(s):  
P. M. E. Décréau ◽  
S. Kougblénou ◽  
G. Lointier ◽  
J.-L. Rauch ◽  
J.-G. Trotignon ◽  
...  

Abstract. The Cluster mission operated a "tilt campaign" during the month of May 2008. Two of the four identical Cluster spacecraft were placed at a close distance (~50 km) from each other and the spin axis of one of the spacecraft pair was tilted by an angle of ~46°. This gave the opportunity, for the first time in space, to measure global characteristics of AC electric field, at the sensitivity available with long boom (88 m) antennas, simultaneously from the specific configuration of the tilted pair of satellites and from the available base of three satellites placed at a large characteristic separation (~1 RE). This paper describes how global characteristics of radio waves, in this case the configuration of the electric field polarization ellipse in 3-D-space, are identified from in situ measurements of spin modulation features by the tilted pair, validating a novel experimental concept. In the event selected for analysis, non-thermal continuum (NTC) waves in the 15–25 kHz frequency range are observed from the Cluster constellation placed above the polar cap. The observed intensity variations with spin angle are those of plane waves, with an electric field polarization close to circular, at an ellipticity ratio e = 0.87. We derive the source position in 3-D by two different methods. The first one uses ray path orientation (measured by the tilted pair) combined with spectral signature of magnetic field magnitude at source. The second one is obtained via triangulation from the three spacecraft baseline, using estimation of directivity angles under assumption of circular polarization. The two results are not compatible, placing sources widely apart. We present a general study of the level of systematic errors due to the assumption of circular polarization, linked to the second approach, and show how this approach can lead to poor triangulation and wrong source positioning. The estimation derived from the first method places the NTC source region in the dawn sector, at a large L value (L ~ 10) and a medium geomagnetic latitude (35° S). We discuss these untypical results within the frame of the geophysical conditions prevailing that day, i.e. a particularly quiet long time interval, followed by a short increase of magnetic activity.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 65 ◽  
Author(s):  
Bing-Yau Huang ◽  
Shuan-Yu Huang ◽  
Chia-Hsien Chuang ◽  
Chie-Tong Kuo

This paper proposes an effective approach to fabricate a blue phase liquid crystal (BPLC) microlens array based on a photoconductive film. Owing to the characteristics of photo-induced conducting polymer polyvinylcarbazole (PVK), in which conductivity depends on the irradiation of UV light, a progressive mask resulting in the variation of conductivity is adopted to produce the gradient distribution of the electric field. The reorientations of liquid crystals according to the gradient distribution of the electric field induce the variation of the refractive index. Thus, the incident light experiences the gradient distribution of the refractive index and results in the focusing phenomenon. The study investigates the dependence of lens performance on UV exposure time, the focal length of the lens, and focusing intensities with various incident polarizations. The BPLC microlens array exhibits advantages such as electrically tunability, polarization independence, and fast response time.


2011 ◽  
Vol 88 (11) ◽  
pp. 3338-3346 ◽  
Author(s):  
Alessio Tamburrano ◽  
Biagio De Vivo ◽  
Magnus Höijer ◽  
Laurent Arurault ◽  
Vincenzo Tucci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document