The friction parameter regulation of magnetorheological elastomers by the initial arrangement and evolution of microscopic ferromagnetic particles

Author(s):  
Shenyao Feng ◽  
Ping-an Yang ◽  
Rui Li ◽  
Xiaojie Wang ◽  
Xin Huang ◽  
...  
2009 ◽  
Vol 131 (9) ◽  
Author(s):  
Xiaojie Wang ◽  
Faramarz Gordaninejad ◽  
Mert Calgar ◽  
Yanming Liu ◽  
Joko Sutrisno ◽  
...  

A magnetorheological elastomer (MRE) is comprised of ferromagnetic particles aligned in a polymer medium by exposure to a magnetic field. The structures of the magnetic particles within elastomers are very sensitive to the external stimulus of either mechanical force or magnetic field, which result in multiresponse behaviors in a MRE. In this study, the sensing properties of MREs are investigated through experimentally characterizing the electrical properties of MRE materials and their interfaces with external stimulus (magnetic field or stress/strain). A phenomenological model is proposed to understand the impedance response of MREs under mechanical loads and magnetic fields. Results show that MRE samples exhibit significant changes in measured values of impedance and resistance in response to compressive deformation, as well as the applied magnetic field.


2009 ◽  
Vol 154 ◽  
pp. 107-112 ◽  
Author(s):  
Anna Boczkowska ◽  
Stefan F. Awietjan

In this paper studies on urethane magnetorheological elastomers (MREs) microstructure in respect to their magnetic and mechanical properties are reported. MREs were obtained from a mixture of polyurethane gel and carbonyl-iron particles cured in a magnetic field of 100 and 300 mT. The amount of particles was varied from 1.5 to 33 vol. %. Samples with different arrangements of particles were produced. Effect of the amount of ferromagnetic particles and their arrangement on microstructure and properties in relation to the external magnetic field was investigated. The microstructure was studied using scanning electron microscopy. Magnetic properties were measured using vibrating sample magnetometer. Rheological and mechanical properties under compression were also examined.


2012 ◽  
Vol 714 ◽  
pp. 167-173 ◽  
Author(s):  
Marcin Masłowski ◽  
Marian Zaborski

Magnetorheological elastomer composites (MREs) based on different magnetoactive fillers such as: carbonyl iron powder (CIP), gamma iron oxide (γ-Fe2O3), micro-and nanosize Fe3O4 are reported and studied. MREs were obtained from various elastomer matrixes such as: ethylene propylene, acrylonitrile butadiene, silicone, ethylene-octene and polyoctenamer rubbers. To align particles in elastomer, cross-linking process took place in magnetic field. Effect of the amount of ferromagnetic particles and their arrangement on the microstructure and properties in relation to the external magnetic field was examined. The microstructure, magnetic and magnetoreological properties of compositions were investigated with scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and ARES Rheometer with magnetic device. Cross-linking density and mechanical properties of the composites were also studied. It was found that microstructure anisotropy has significant effect on the properties of magnetorheological elastomers. Moreover, different amount of magnetoactive fillers influence mechanical and magnetic properties of the vulcanizates. Many essential conclusions occur after application the wide variety of elastomer matrixes filled with different ferromagnetic particles in the context of preparation process of smart materials based on magnetorheological elastomer composites.


2007 ◽  
Vol 21 (28n29) ◽  
pp. 5010-5017 ◽  
Author(s):  
B. K. S. WOODS ◽  
N. WERELEY ◽  
R. HOFFMASTER ◽  
N. NERSESSIAN

Magnetorheological elastomers (MREs) consist of ferromagnetic particles embedded in a compliant matrix (i.e. elastomer). Due to the magnetic interaction of the ferromagnetic particles, MREs exhibit field dependent physical properties. Very significant changes in the modulus and loss factor of the elastomer can be realized. This makes MREs a promising candidate for active vibration control mechanisms. One factor currently limiting the implementation of this technology is the lack of an efficient manufacturing method that is practical for mass production. Most of the specimens created for previous MRE research were made using simple casting or mechanical mixing methods that are not ideal. In this research a new methodology for producing MREs using Vacuum Assisted Resin Transfer Molding (VARTM) was investigated. The method was used with a range of iron particles sizes and silicon elastomer systems and found to be effective within certain limits of applicability. The specimens produced were tested in compression under a range of magnetic fields to validate the presence of the MR effect. Relative changes in compressive modulus ranging from 35% to 150% (depending on volume fraction), under fields of around 0.3T were observed.


PROMUSIKA ◽  
2013 ◽  
pp. 33
Author(s):  
R.M. Singgih Sanjaya

This study discusses a music arrangement methodological approach that is based on research and author’s ongoing experience run for more then twnry five years. The study is aimed at contributing a methodic guidance for those who concern with music arrangement. The research output of this study is a formulation of the five steps in music arrangement that encompass: arrangement concept, initial arrangement, creating new idea, further arrangement, and evaluation as well as revision.The author suggests that piano is the best instrument for arrangement and the arranger should actively hear the arrangements of various musical genres. Keywords: music arrangement, five steps, methodic guidance


Tellus ◽  
1972 ◽  
Vol 24 (6) ◽  
pp. 561-567 ◽  
Author(s):  
Endre Wirth ◽  
Franco Prodi

2021 ◽  
Vol 57 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Hossein Vatandoost ◽  
Subhash Rakheja ◽  
Ramin Sedaghati ◽  
Masoud Hemmatian

Sign in / Sign up

Export Citation Format

Share Document