Smart Monitoring of a Full-scale Composite Hydrofoil Manufactured using Automated Fibre Placement under High Cycle Fatigue

Author(s):  
Md Shamsuddoha ◽  
Gangadhara B. Prusty ◽  
Phyo Thu Maung ◽  
Andrew W. Phillips ◽  
Nigel St John

Abstract Fibre reinforced composites materials offer a pathway to produce passive shape adaptive smart marine propellers, which have improved performance characteristics over traditional metallic alloys. Automated Fibre Placement (AFP) technology can provide a leap forward in Cyber-Physical automated manufacturing, which is essential for the implementation and operation of smart factories in the marine propeller industry towards Industry 4.0 readiness. In this paper, a comprehensive structural health monitoring (SHM) routine was performed on an AFP full-scale composite hydrofoil to gain confidence in its dynamic and structural performances through a number of active and passive sensors. The hydrofoil was subjected to constant amplitude flexural fatigue loading in a purpose-built test rig for 105 cycles. The hydrofoil was embedded with distributed optical fibre sensors (DOFS), traditional electrical strain gauges and linear variable displacement transducers (LVDTs). Both microelectromechanical system (MEMS) and piezoelectric (PZT) accelerometers were used to conduct experimental modal analyses (EMA) to observe changes in the modal response of the hydrofoil at regular intervals throughout the fatigue program. The hydrofoils modal response, as well as the stiffness measured using both displacements and strains, remained unchanged over the fatigue loading regime demonstrating the structural integrity of the hydrofoil. The optical fibre sensors endured the fatigue test cycles showing their robustness under fatigue loads. Furthermore, the sensing systems demonstrated the potential of being utilised as a useful maintenance tool combining their adaptability with automated manufacturing during manufacturing through integration within the hydrofoil, a structural test framework for performance measurement, data acquisition and analytics for visualization, and the prospect of decision making for maintenance requirement during any onset in structural performance.

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4380
Author(s):  
Alirio Andres Bautista Villamil ◽  
Juan Pablo Casas Rodriguez ◽  
Alicia Porras Holguin ◽  
Maribel Silva Barrera

The T-90 Calima is a low-wing monoplane aircraft. Its structure is mainly composed of different components of composite materials, which are mainly bonded by using adhesive joints of different thicknesses. The T-90 Calima is a trainer aircraft; thus, adverse operating conditions such as hard landings, which cause impact loads, may affect the structural integrity of aircrafts. As a result, in this study, the mode I crack propagation rate of a typical adhesive joint of the aircraft is estimated under impact and constant amplitude fatigue loading. To this end, effects of adhesive thickness on the mechanical performance of the joint under quasistatic loading conditions, impact and constant amplitude fatigue in double cantilever beam (DCB) specimens are experimentally investigated. Cyclic impact is induced using a drop-weight impact testing machine to obtain the crack propagation rate (da/dN) as a function of the maximum strain energy release rate (GImax) diagram; likewise, this diagram is also obtained under constant amplitude fatigue, and both diagrams are compared to determine the effect of each type of loading on the structural integrity of the joint. Results reveal that the crack propagation rate under impact fatigue is three orders of magnitude greater than that under constant amplitude fatigue.


2007 ◽  
Vol 18 (10) ◽  
Author(s):  
Julian D C Jones ◽  
Ralph P Tatam

2018 ◽  
Vol 147 ◽  
pp. 496-516 ◽  
Author(s):  
Youngjun You ◽  
Jaehan Kim ◽  
Min-Guk Seo

Sensors ◽  
2017 ◽  
Vol 17 (6) ◽  
pp. 1377 ◽  
Author(s):  
Sylvie Delepine-Lesoille ◽  
Sylvain Girard ◽  
Marcel Landolt ◽  
Johan Bertrand ◽  
Isabelle Planes ◽  
...  

1992 ◽  
Vol 114 (1) ◽  
pp. 45-51 ◽  
Author(s):  
G. J. Brereton ◽  
A. Kodal

A new technique is presented for decomposing unsteady turbulent flow variables into their organized unsteady and turbulent components, which appears to offer some significant advantages over existing ones. The technique uses power-spectral estimates of data to deduce the optimal frequency-domain filter for determining the organized and turbulent components of a time series of data. When contrasted with the phase-averaging technique, this method can be thought of as replacing the assumption that the organized motion is identically reproduced in successive cycles of known periodicity by a more general condition: the cross-correlation of the organized and turbulent components is minimized for a time series of measurement data, given the expected shape of the turbulence power spectrum. The method is significantly more general than the phase average in its applicability and makes more efficient use of available data. Performance evaluations for time series of unsteady turbulent velocity measurements attest to the accuracy of the technique and illustrate the improved performance of this method over the phase-averaging technique when cycle-to-cycle variations in organized motion are present.


1998 ◽  
Vol 68 (1-3) ◽  
pp. 320-323 ◽  
Author(s):  
S.F. Knowles ◽  
B.E. Jones ◽  
S. Purdy ◽  
C.M. France

Sign in / Sign up

Export Citation Format

Share Document