scholarly journals Fully differentiable optimization protocols for non-equilibrium steady states

Author(s):  
Rodrigo Vargas ◽  
Ricky T. Q. Chen ◽  
Kenneth A. Jung ◽  
Paul Brumer

Abstract In the case of quantum systems interacting with multiple environments, the time-evolution of the reduced density matrix is described by the Liouvillian. For a variety of physical observables, the long-time limit or steady state solution is needed for the computation of desired physical observables. For inverse design or optimal control of such systems, the common approaches are based on brute-force search strategies. Here, we present a novel methodology, based on automatic differentiation, capable of differentiating the steady state solution with respect to any parameter of the Liouvillian. Our approach has a low memory cost, and is agnostic to the exact algorithm for computing the steady state. We illustrate the advantage of this method by inverse designing the parameters of a quantum heat transfer device that maximizes the heat current and the rectification coefficient. Additionally, we optimize the parameters of various Lindblad operators used in the simulation of energy transfer under natural incoherent light. We also present a sensitivity analysis of the steady state for energy transfer under natural incoherent light as a function of the incoherent- light pumping rate.

2003 ◽  
Vol 13 (01) ◽  
pp. 19-33 ◽  
Author(s):  
SERDAL PAMUK

Qualitative analysis of a mathematical model for capillary formation is presented under assumptions that enzyme and fibronectin concentrations are in quasi-steady state. The aim of this paper is to prove mathematically that the long-time tendency of endothelial cells will be towards the transition probability density function of enzyme and fibronectin. Endothelial cell steady-state solution is obtained and a numerical simulation is provided to show that there is a close agreement between the steady-state solution obtained analytically and the numerically calculated steady-state of the related initial value problem, which provides strong evidence for the stability of this steady-state.


1965 ◽  
Vol 32 (4) ◽  
pp. 788-792 ◽  
Author(s):  
M. J. Forrestal ◽  
G. Herrmann

An infinitely long, circular, cylindrical shell is submerged in an acoustic medium and subjected to a plane, axially propagating step wave. The fluid-shell interaction is approximated by neglecting fluid motions in the axial direction, thereby assuming that cylindrical waves radiate away from the shell independently of the axial coordinate. Rotatory inertia and transverse shear deformations are included in the shell equations of motion, and a steady-state solution is obtained by combining the independent variables, time and the axial coordinate, through a transformation that measures the shell response from the advancing wave front. Results from the steady-state solution for the case of steel shells submerged in water are presented using both the Timoshenko-type shell theory and the bending shell theory. It is shown that previous solutions, which assumed plane waves radiated away from the vibrating shell, overestimated the dumping effect of the fluid, and that the inclusion of transverse shear deformations and rotatory inertia have an effect on the response ahead of the wave front.


2019 ◽  
Vol 3 (1) ◽  
pp. 26 ◽  
Author(s):  
Vishnu Sidaarth Suresh

Load flow studies are carried out in order to find a steady state solution of a power system network. It is done to continuously monitor the system and decide upon future expansion of the system. The parameters of the system monitored are voltage magnitude, voltage angle, active and reactive power. This paper presents techniques used in order to obtain such parameters for a standard IEEE – 30 bus and IEEE-57 bus network and makes a comparison into the differences with regard to computational time and effectiveness of each solver


2021 ◽  
Vol 33 (5) ◽  
pp. 950-957
Author(s):  
Yu-pei Lyu ◽  
Ming-min Guo ◽  
Peng Zhang ◽  
Rui Fang ◽  
Zhi-yang Lin ◽  
...  

Author(s):  
A. Yusnaeni ◽  
Kasbawati Kasbawati ◽  
Toaha Syamsuddin

AbstractIn this paper, we study a mathematical model of an immune response system consisting of a number of immune cells that work together to protect the human body from invading tumor cells. The delay differential equation is used to model the immune system caused by a natural delay in the activation process of immune cells. Analytical studies are focused on finding conditions in which the system undergoes changes in stability near a tumor-free steady-state solution. We found that the existence of a tumor-free steady-state solution was warranted when the number of activated effector cells was sufficiently high. By considering the lag of stimulation of helper cell production as the bifurcation parameter, a critical lag is obtained that determines the threshold of the stability change of the tumor-free steady state. It is also leading the system undergoes a Hopf bifurcation to periodic solutions at the tumor-free steady-state solution.Keywords: tumor–immune system; delay differential equation; transcendental function; Hopf bifurcation. AbstrakDalam makalah ini, dikaji model matematika dari sistem respon imun yang terdiri dari sejumlah sel imun yang bekerja sama untuk melindungi tubuh manusia dari invasi sel tumor. Persamaan diferensial tunda digunakan untuk memodelkan sistem kekebalan yang disebabkan oleh keterlambatan alami dalam proses aktivasi sel-sel imun. Studi analitik difokuskan untuk menemukan kondisi di mana sistem mengalami perubahan stabilitas di sekitar solusi kesetimbangan bebas tumor. Diperoleh bahwa solusi kesetimbangan bebas tumor dijamin ada ketika jumlah sel efektor yang diaktifkan cukup tinggi. Dengan mempertimbangkan tundaan stimulasi produksi sel helper sebagai parameter bifurkasi, didapatkan lag kritis yang menentukan ambang batas perubahan stabilitas dari solusi kesetimbangan bebas tumor. Parameter tersebut juga mengakibatkan sistem mengalami percabangan Hopf untuk solusi periodik pada solusi kesetimbangan bebas tumor.Kata kunci: sistem tumor–imun; persamaan differensial tundaan; fungsi transedental; bifurkasi Hopf.


Sign in / Sign up

Export Citation Format

Share Document