Influence of Cr-doping on structural, magnetic and dielectric properties of M-type hexaferrites synthesized using microwave digestion technique

2022 ◽  
Author(s):  
Ahmed M. Abdel Hakeem ◽  
E.M.M. Ibrahim ◽  
Hazem Mahmoud Ali ◽  
M. M. Abd El-Raheem ◽  
Adel Hamazaoui ◽  
...  

Abstract M-type hexaferrite SrCrxFe12-xO19 compounds doped with Cr (x=0, 1, 2, 3 and 4 at.%) were prepared by microwave digestion system. X-ray diffraction was used to study the structure and crystallization of the samples. The samples are found to have a hexagonal phase, SrFe12O19, as a main phase at 2Θ ≈ 33.144° and 35.618° for x = 0 and 1 respectively, and 32.451° and 34.295° for x ≥ 2. The Rietveld refined parameters such as the lattice parameters (a=b, c), direct and indirect cell volume, crystallite size and microstrain were investigated. TEM and SEM results showed that the samples have hexagonal shape and grain sizes range from 126 nm to 379 nm. Magnetization, M, as a function of the applied magnetic field, H, was obtained from the hysteresis loop. The coercive field, HC , saturation, Ms and remnant, Mr , magnetization and squareness ration, Mr/Ms , were extracted from the hysteresis loop results. These results revealed that HC is inversely proportional with the grains size of the samples but directly proportional with Cr-doping values candidating these compounds to be used in computer hard disk memories applications. M values are inversely proportional with Cr-doping values. The variation of conductivity, σ, impedance, Z, dielectric constant, ε, dielectric loss factor, tan δ and dissipation factor as functions of both AC frequency, F(Hz) and Cr-doping, x, were investigated. The maximum value of the dissipation factor was at x=2 which equals 8.05x109 m/F when F = 2x105 Hz. The impedance of the samples behaved as a capacitor reactance that makes our compounds candidate for many crucial dielectric applications.

2015 ◽  
Vol 29 (14) ◽  
pp. 1550090 ◽  
Author(s):  
O. Mirzaee ◽  
R. Mohamady ◽  
A. Ghasemi ◽  
Y. Alizad Farzin

Nanostructure of Y-type hexaferrite with composition of Sr 2 Ni 2 Al x/2 Cr x/2 Fe 12-x O 22 (where x are 0, 0.6, 1.2, 1.8, 2.4 and 3) were prepared by sol–gel auto-combustion method. The influence of Al and Cr doping on the structural and magnetic properties has been investigated. The X-ray diffraction (XRD) patterns confirm phase formation of Y-type hexaferrite. The microstructure and morphology of prepared samples were studied by high resolution field emission scanning electron microscope (FESEM) which shows the hexagonal shape for all of the samples. Magnetic properties were characterized using vibrating sample magnetometer (VSM). The magnetic results revealed that by increasing the Al and Cr to the structure, the coercivity was also increased from 840 Oe to 1160 Oe. Moreover it has been shown that with addition of dopants, saturation magnetization (Ms) and remnant magnetization (Mr) were decreased from 39.61 emu/g to 30.11 emu/g and from 17.51 emu/g to 14.62 emu/g, respectively, due to the entrance of nonmagnetic ions into Fe 3+ sites.


1999 ◽  
Vol 574 ◽  
Author(s):  
Choong-Rae Cho ◽  
S. I. Khartsev ◽  
A. M. Grishin ◽  
Ture Lindbäick

AbstractWe report on ferroelectric/giant magnetoresistive Na0.5K0.5NbO3/La0.6Sr0.2Mn1.2O3 (NKN/LSMO) heterostructures grown onto LaAlO3 (001) single crystal using KrF pulsed laser ablation of stoichiometric ceramic target. Main processing parameters have been optimized to obtain smooth LSMO template layer, avoid NKN-LSMO interdiffusion, preserve NKN stoichiometry against the lost of volatile potassium and sodium and achieve reasonable reliability of NKN film performance. X-ray diffraction θ- 2θ scans and rocking curves evidence for single-phase content and high c-axis orientation both in template LSMO and top NKN layers. Ferroelectric measurements yield remnant polarization Pr of 1.5 [C/cm2 and spontaneous polarization Ps of 7 μC/cm2 at electric field strength of 130 kV/cm. At room temperature, dielectric permittivity ε′ and dissipation factor tan δ have been found to vary from 595 to 555 and 0.046 to 0.029 respectively in the frequency range of 0.4 to 20 kHz. At 10 kHz dielectric permittivity linearly increases from 410 to 650 in the temperature range 77 K to 415 K while the dissipation factor below 320 K does not exceed 3%.


Author(s):  
William H. Massover

The molecular structure of the iron-storage protein, ferritin, is becoming known in ever finer detail. The 24 apoferritin subunits (MW ca. 20,000) have a 2:1 axial ratio and are polymerized with 4:3:2 symmetry to form an outer shell surrounding a variable amount of microcrystalline iron, Recent x-ray diffraction results indicate that the projected outline of the native molecule has a quasi-hexagonal shape when viewed down the 3-fold axes of symmetry, and a quasi-square shape when looking down the 4-fold axes. To date, no electron microscope study has reported observing anything other than circular profiles, which would indicate that ferritin is strictly spherical. The apparent conflict between the "hollow sphere" of electron microscopy (E.M.) and the "truncated rhombic dodecahedron" of x-ray diffraction could reflect the poorer effective resolution of E.M. coming from radiation damage, staining, drying, etc. The present study investigates the detailed shape of individual ferritin molecules in order to search for the predicted aspherical profiles and to interpret the nature of this apparent contradiction.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 832
Author(s):  
Edna X. Figueroa-Rosales ◽  
Javier Martínez-Juárez ◽  
Esmeralda García-Díaz ◽  
Daniel Hernández-Cruz ◽  
Sergio A. Sabinas-Hernández ◽  
...  

Hydroxyapatite (HAp) and hydroxyapatite/multi-walled carbon nanotube (MWCNT) composites were obtained by the co-precipitation method, followed by ultrasound-assisted and microwave radiation and thermal treatment at 250 °C. X-ray diffraction (XRD) confirmed the presence of a hexagonal phase in all the samples, while Fourier-transform infrared (FTIR) spectroscopy elucidated the interaction between HAp and MWCNTs. The photoluminescent technique revealed that HAp and the composite with non-functionalized MWCNTs present a blue luminescence, while the composite with functionalized MWCNTs, under UV-vis radiation shows an intense white emission. These findings allowed presentation of a proposal for the use of HAp and HAp with functionalized MWCNTs as potential materials for optoelectronic and medical applications.


2020 ◽  
Vol 901 ◽  
pp. 65-71
Author(s):  
Woravith Chansuvarn

Bottom ash is a part of by-product from the municipal solid waste power plants which is always a wider problem for the urban and rural communities due to its disposal plants may cause serious environmental pollution. This work was focused on the residual heavy metal in an incinerator bottom ash from the municipal waste power plant placed in Nongkham district, Bangkok. Four bottom ash samples were obtained in 2017. After drying and grounding, the bottom ash samples were prepared to clear solution with the microwave digestion technique using nitric, hydrochloric and hydrofluoric acid under the heating program. The total residual heavy metals in the incinerator bottom ashes, such as lead, copper, zinc, and cadmium were determined by using flame atomic absorption spectrophotometer (FAAS) with deuterium background correction. The total concentration of lead, copper, zinc and cadmium were found in the range of 280.40-354.22mg kg-1, 365.35-524.45 mg kg-1, 1,527.25-2,074.34 mg kg-1, and 0.48-1.02 mg kg-1, respectively. The recovery of all metals was found in the range of 89.4-101.2% and the relative standard deviation (RSD) was to be 2.15-3.55 % (n=7). The concentration of zinc, copper, and lead was found high levels, while cadmium was low concentration. Heavy metals in solid waste material occur in different chemical forms and phases. The sample preparation based on the microwave digestion was successfully developed for the waste samples with a good reliability.


1989 ◽  
Vol 157 ◽  
Author(s):  
E. Johnson ◽  
L. Gråbaek ◽  
J. Bohr ◽  
A. Johansen ◽  
L. Sarholt-Kristensen ◽  
...  

ABSTRACTIon implantation at room temperature of lead into aluminium leads to spontaneous phase separation and formation of lead precipitates growing topotactically with the matrix. Unlike the highly pressurised (∼ 1–5 GPa) solid inclusions formed after noble gas implantations, the pressure in the lead precipitates is found to be less than 0.12 GPa.Recently we have observed the intriguing result that the lead inclusions in aluminium exhibit both superheating and supercooling [1]. In this paper we review and elaborate on these results. Small implantation-induced lead precipitates embedded in an aluminium matrix were studied by X-ray diffraction. The (111) Bragg peak originating from the lead crystals was followed during several temperature cycles, from room temperature to 678 K. The melting temperature for bulk lead is 601 K. In the first heating cycle we found a superheating of the lead precipitates of 67 K before melting occurred. During subsequent cooling a supercooling of 21 K below the solidification point of bulk lead was observed. In the subsequent heating cycles this hysteresis at the melting transition was reproducible. The full width of the hysteresis loop slowly decreased to 62 K, while the mean size of the inclusions gradually increased from 14.5 nm to 27 nm. The phenomena of superheating and supercooling are thus most pronounced for the small crystallites. The persistence of the hysteresis loop over successive heating cycles demonstrate that its cause is intrinsic in nature, and it is believed that the superheating originates from the lack of free surfaces of the lead inclusions.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6522
Author(s):  
Giovanni García Domínguez ◽  
Sebastián Diaz De La Torre ◽  
Lorena Chávez Güitrón ◽  
Erasto Vergara Hernández ◽  
Joan Reyes Miranda ◽  
...  

Hydroxyapatite (HAp) nanoparticles with a homogeneous rod morphology were successfully synthesized using the hydrothermal method. The powders were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The antibacterial and dermal irritation analyses of the samples were performed and discussed. The use of cationic and anionic surfactants, namely, cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), respectively, at a low concentration (2.5 mol%) modified the length/diameter (L/D) ratio of the HAp rods. Structural characterizations of hydroxyapatite synthesized without surfactant (HA), with 2.5 and 5 mol% of SDS (SDS− and SDS+, respectively), and with 2.5 and 5 mol% of CTAB (CTAB− and CTAB+, respectively) revealed well-crystallized samples in the hexagonal phase. The CTAB− sample presented antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, Streptococcus anginosus, Staphylococcus aureus, Micrococcus luteus, and Klebsiella pneumoniae, suggesting that antimicrobial susceptibility was promoted by the bacterial nature and the use of the surfactant. Dermal irritation showed no clinical signs of disease in rabbits during the study, where there was neither erythema nor necrosis at the inoculation sites.


2018 ◽  
Vol 16 (36) ◽  
pp. 140-152 ◽  
Author(s):  
Nasma A. Jaber

Lithium doped Nickel-Zinc ferrite material with chemical formula Ni0.9−2x Zn0.1LixFe2+xO4, where x is the ratio of lithium ions Li+ (x = 0, 0.01, 0.02, 0.03 and 0.04) prepared by using sol-gel auto combustion technique. X-ray diffraction results showed that the material have pure cubic spinal structure with space group Fd-3m. The experimental values of the lattice constant (aexp) were decreased from 8.39 to 8.35 nm with doped Li ions. It was found that the decreasing of the crystallite size with addition of lithium ions concentration. The radius of tetrahedral (rtet) and octahedral (roct) site were computed from cation distribution. SEM images have been taken to show the morphology of compound. The dielectric parameters [dissipation factor (Df), the dielectric constant (Ԑ') and a.c. conductivity (ζac)] of spinal ferrite nano-powder have been measured. The dielectric parameters as a function of concentration have been studied for ferrite synthesis. The saturation of magnetization (Ms), remiensis (Mr) and coersivity (Hc) were found from hysteresis loop. The Ms and Hc varied from 36.47 to 66.15 emu/gm and 103 to 133 Oe for ferrite synthesis, respectively.


Sign in / Sign up

Export Citation Format

Share Document