scholarly journals Global constraints on vector-like WIMP effective interactions

2016 ◽  
Vol 2016 (04) ◽  
pp. 015-015 ◽  
Author(s):  
Mattias Blennow ◽  
Pilar Coloma ◽  
Enrique Fernández-Martínez ◽  
Pedro A.N. Machado ◽  
Bryan Zaldívar
1984 ◽  
Vol 45 (C4) ◽  
pp. C4-231-C4-249
Author(s):  
W. G. Love ◽  
M. A. Franey

1998 ◽  
Vol 538 ◽  
Author(s):  
Raúl A. Enrique ◽  
Pascal Bellon

AbstractPhase stability in alloys under irradiation is studied considering effective thermodynamic potentials. A simple kinetic model of a binary alloy with phase separation is investigated. Time evolution in the alloy results from two competing dynamics: thermal diffusion, and irradiation induced ballistic exchanges. The dynamical (steady state) phase diagram is evaluated exactly performing Kinetic Monte Carlo simulations. The solution is then compared to two theoretical frameworks: the effective quasi-interactions model as proposed by Vaks and Kamishenko, and the effective free energy model as proposed by Martin. New developments of these models are proposed to allow for quantitative comparisons. Both theoretical frameworks yield fairly good approximations to the dynamical phase diagram.


Author(s):  
Michael Silberstein ◽  
W.M. Stuckey ◽  
Timothy McDevitt

The main thread of chapter 4 introduces some of the major mysteries and interpretational issues of quantum mechanics (QM). These mysteries and issues include: quantum superposition, quantum nonlocality, Bell’s inequality, entanglement, delayed choice, the measurement problem, and the lack of counterfactual definiteness. All these mysteries and interpretational issues of QM result from dynamical explanation in the mechanical universe and are dispatched using the authors’ adynamical explanation in the block universe, called Relational Blockworld (RBW). A possible link between RBW and quantum information theory is provided. The metaphysical underpinnings of RBW, such as contextual emergence, spatiotemporal ontological contextuality, and adynamical global constraints, are provided in Philosophy of Physics for Chapter 4. That is also where RBW is situated with respect to retrocausal accounts and it is shown that RBW is a realist, psi-epistemic account of QM. All the relevant formalism for this chapter is provided in Foundational Physics for Chapter 4.


1985 ◽  
Vol 40 (1) ◽  
pp. 14-28
Author(s):  
H. Stumpf

Unified nonlinear spinor field models are selfregularizing quantum field theories in which all observable (elementary and non-elementary) particles are assumed to be bound states of fermionic preon fields. Due to their large masses the preons themselves are confined. In preceding papers a functional energy representation, the statistical interpretation and the dynamical equations were derived. In this paper the dynamics of composite particles is discussed. The composite particles are defined to be eigensolutions of the diagonal part of the energy representation. Corresponding calculations are in preparation, but in the present paper a suitable composite particle spectrum is assumed. It consists of preon-antipreon boson states and threepreon- fermion states with corresponding antifermions and contains bound states as well as preon scattering states. The state functional is expanded in terms of these composite particle states with inclusion of preon scattering states. The transformation of the functional energy representation of the spinor field into composite particle functional operators produces a hierarchy of effective interactions at the composite particle level, the leading terms of which are identical with the functional energy representation of a phenomenological boson-fermion coupling theory. This representation is valid as long as the processes are assumed to be below the energetic threshold for preon production or preon break-up reactions, respectively. From this it can be concluded that below the threshold the effective interactions of composite particles in a unified spinor field model lead to phenomenological coupling theories which depend in their properties on the bound state spectrum of the self-regularizing spinor theory.


2021 ◽  
Vol 16 (2) ◽  
pp. 1-23
Author(s):  
Zhao Li ◽  
Junshuai Song ◽  
Zehong Hu ◽  
Zhen Wang ◽  
Jun Gao

Impression regulation plays an important role in various online ranking systems, e.g. , e-commerce ranking systems always need to achieve local commercial demands on some pre-labeled target items like fresh item cultivation and fraudulent item counteracting while maximizing its global revenue. However, local impression regulation may cause “butterfly effects” on the global scale, e.g. , in e-commerce, the price preference fluctuation in initial conditions (overpriced or underpriced items) may create a significantly different outcome, thus affecting shopping experience and bringing economic losses to platforms. To prevent “butterfly effects”, some researchers define their regulation objectives with global constraints, by using contextual bandit at the page-level that requires all items on one page sharing the same regulation action, which fails to conduct impression regulation on individual items. To address this problem, in this article, we propose a personalized impression regulation method that can directly makes regulation decisions for each user-item pair. Specifically, we model the regulation problem as a C onstrained D ual-level B andit (CDB) problem, where the local regulation action and reward signals are at the item-level while the global effect constraint on the platform impression can be calculated at the page-level only. To handle the asynchronous signals, we first expand the page-level constraint to the item-level and then derive the policy updating as a second-order cone optimization problem. Our CDB approaches the optimal policy by iteratively solving the optimization problem. Experiments are performed on both offline and online datasets, and the results, theoretically and empirically, demonstrate CDB outperforms state-of-the-art algorithms.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Timothy Trott

Abstract Sum rules in effective field theories, predicated upon causality, place restrictions on scattering amplitudes mediated by effective contact interactions. Through unitarity of the S-matrix, these imply that the size of higher dimensional corrections to transition amplitudes between different states is bounded by the strength of their contributions to elastic forward scattering processes. This places fundamental limits on the extent to which hypothetical symmetries can be broken by effective interactions. All analysis is for dimension 8 operators in the forward limit. Included is a thorough derivation of all positivity bounds for a chiral fermion in SU(2) and SU(3) global symmetry representations resembling those of the Standard Model, general bounds on flavour violation, new bounds for interactions between particles of different spin, inclusion of loops of dimension 6 operators and illustration of the resulting strengthening of positivity bounds over tree-level expectations, a catalogue of supersymmetric effective interactions up to mass dimension 8 and 4 legs and the demonstration that supersymmetry unifies the positivity theorems as well as the new bounds.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Eric D’Hoker ◽  
Carlos R. Mafra ◽  
Boris Pioline ◽  
Oliver Schlotterer

Abstract In an earlier paper, we constructed the genus-two amplitudes for five external massless states in Type II and Heterotic string theory, and showed that the α′ expansion of the Type II amplitude reproduces the corresponding supergravity amplitude to leading order. In this paper, we analyze the effective interactions induced by Type IIB superstrings beyond supergravity, both for U(1)R-preserving amplitudes such as for five gravitons, and for U(1)R-violating amplitudes such as for one dilaton and four gravitons. At each order in α′, the coefficients of the effective interactions are given by integrals over moduli space of genus-two modular graph functions, generalizing those already encountered for four external massless states. To leading and sub-leading orders, the coefficients of the effective interactions D2ℛ5 and D4ℛ5 are found to match those of D4ℛ4 and D6ℛ4, respectively, as required by non-linear supersymmetry. To the next order, a D6ℛ5 effective interaction arises, which is independent of the supersymmetric completion of D8ℛ4, and already arose at genus one. A novel identity on genus-two modular graph functions, which we prove, ensures that up to order D6ℛ5, the five-point amplitudes require only a single new modular graph function in addition to those needed for the four-point amplitude. We check that the supergravity limit of U(1)R-violating amplitudes is free of UV divergences to this order, consistently with the known structure of divergences in Type IIB supergravity. Our results give strong consistency tests on the full five-point amplitude, and pave the way for understanding S-duality beyond the BPS-protected sector.


2005 ◽  
Vol 19 (30) ◽  
pp. 1793-1802 ◽  
Author(s):  
M. MODARRES

We investigate the possible angular momentum, l, dependence of the ground state energy of normal liquid 3 He . The method of lowest order constrained variational (LOCV) which includes the three-body cluster energy and normalization constraint (LOCVE) is used with angular momentum dependent two-body correlation functions. A functional minimization is performed with respect to each l-channel correlation function. It is shown that this dependence increases the binding energy of liquid 3 He by 8% with respect to calculations without angular momentum dependent correlation functions. The l=0 state has completely different behavior with respect to other l-channels. It is also found that the main contribution from potential energy comes from the l=1 state (p-waves) and the effect of l≥11 is less than about 0.1%. The effective interactions and two-body correlations in different channels are being discussed. Finally we conclude that this l-dependence can be verified experimentally by looking into the magnetization properties of liquid helium 3 and interatomic potentials.


Sign in / Sign up

Export Citation Format

Share Document