scholarly journals Late-time acceleration by a residual cosmological constant from sequestering vacuum energy in ultimate collapsed structures

2019 ◽  
Vol 2019 (09) ◽  
pp. 065-065
Author(s):  
Lucas Lombriser
2020 ◽  
Vol 17 (05) ◽  
pp. 2050075
Author(s):  
Nasr Ahmed ◽  
Kazuharu Bamba ◽  
F. Salama

In this paper, we study the possibility of obtaining a stable flat dark energy-dominated universe in a good agreement with observations in the framework of Swiss-cheese brane-world cosmology. Two different brane-world cosmologies with black strings have been introduced for any cosmological constant [Formula: see text] using two empirical forms of the scale factor. In both models, we have performed a fine-tuning between the brane tension and the cosmological constant so that the Equation of state (EoS) parameter [Formula: see text] for the current epoch, where the redshift [Formula: see text]. We then used these fine–tuned values to calculate and plot all parameters and energy conditions. The deceleration–acceleration cosmic transition is allowed in both models, and the jerk parameter [Formula: see text] at late-times. Both solutions predict a future dark energy-dominated universe in which [Formula: see text] with no crossing to the phantom divide line. While the pressure in the first solution is always negative, the second solution predicts a better behavior of cosmic pressure where the pressure is negative only in the late-time accelerating era but positive in the early-time decelerating era. Such a positive-to-negative transition in the evolution of pressure helps to explain the cosmic deceleration–acceleration transition. Since black strings have been proved to be unstable by some authors, this instability can actually reflect doubts on the stability of cosmological models with black strings (Swiss-cheese type brane-worlds cosmological models). For this reason, we have carefully investigated the stability through energy conditions and sound speed. Because of the presence of quadratic energy terms in Swiss-cheese type brane-world cosmology, we have tested the new nonlinear energy conditions in addition to the classical energy conditions. We have also found that a negative tension brane is not allowed in both models of the current work as the energy density will no longer be well defined.


Pramana ◽  
2010 ◽  
Vol 74 (3) ◽  
pp. 481-489 ◽  
Author(s):  
Narayan Banerjee ◽  
Sudipta Das ◽  
Koyel Ganguly

2009 ◽  
Vol 18 (14) ◽  
pp. 2265-2268 ◽  
Author(s):  
VIQAR HUSAIN

We describe a link between the cosmological constant problem and the problem of time in quantum gravity. This arises from examining the relationship between the cosmological constant and vacuum energy in light of nonperturbative formulations of quantum gravity.


2020 ◽  
Vol 29 (09) ◽  
pp. 2050064
Author(s):  
I. Díaz-Saldaña ◽  
J. C. López-Domínguez ◽  
M. Sabido

In this work, we study a Friedmann–Robertson–Walker (FRW) universe derived from a modified entropy–area relationship. By applying the first law of thermodynamics to the so-called apparent horizon and a modified entropy–area relationship, we obtain a modified Friedmann equation. Solving this model for a perfect fluid with vanishing cosmological constant, we find that for early times, the scale factor is the same as that of an FRW universe. In the late-time regime, although the cosmological constant is zero, the asymptotic behavior of the scale factor is exponential, and therefore, we can identify an effective cosmological constant. The origin of the effective cosmological constant can be traced to the modifications of the entropy–area relation.


2001 ◽  
Vol 16 (24) ◽  
pp. 1583-1595 ◽  
Author(s):  
L. MERSINI

We examine the cosmology of Randall–Sundrum model in a dynamic setting where scalar fields are present in the bulk as well as the branes. This generates a mechanism similar to that of Goldberger–Wise for radion stabilization and the recovery of late-time cosmology features on the branes. Due to the induced radion dynamics, the inflating branes roll towards the minimum of the radion potential, thereby exiting inflation and reheating the universe. In the slow roll part of the potential, the TeV branes have maximum inflation rate and energy as their coupling to the radion and bulk modes have minimum suppression. Hence, when rolling down the steep end of the potential towards the stable point, the radion field (which appears as the inflaton of the effective 4-D theory in the branes) decays very fast and reheats the universe. This process results in a decrease of the brane's canonical vacuum energy, Λ4. However, at the minimum of the potential Λ4 is small but not necessarily zero and the fine-tuning issue remains. Density perturbation constraints introduce an upper bound on Λ4. Due to the large radion mass and strong suppression to the bulk modes, moduli problems and bulk reheating do not occur. The reheat temperature and a sufficient number of e-folding constraints for the brane-universe are also satisfied. The model therefore recovers the radiation dominated FRW universe.


Sign in / Sign up

Export Citation Format

Share Document