scholarly journals Black hole perturbations in DHOST theories: master variables, gradient instability, and strong coupling

2021 ◽  
Vol 2021 (08) ◽  
pp. 013
Author(s):  
Kazufumi Takahashi ◽  
Hayato Motohashi
2018 ◽  
Vol 175 ◽  
pp. 08004 ◽  
Author(s):  
Raghav G. Jha ◽  
Simon Catterall ◽  
David Schaich ◽  
Toby Wiseman

The lattice studies of maximally supersymmetric Yang-Mills (MSYM) theory at strong coupling and large N is important for verifying gauge/gravity duality. Due to the progress made in the last decade, based on ideas from topological twisting and orbifolding, it is now possible to study these theories on the lattice while preserving an exact supersymmetry on the lattice. We present some results from the lattice studies of two-dimensional MSYM which is related to Type II supergravity. Our results agree with the thermodynamics of different black hole phases on the gravity side and the phase transition (Gregory–Laflamme) between them.


2001 ◽  
Vol 16 (supp01c) ◽  
pp. 1005-1007 ◽  
Author(s):  
RICHARD C. BROWER

The complete glueball spectrum for the AdS7 black hole supergravity dual of QCD is shown to bare a striking resemblance to the known lattice results despite the limitations of the strong coupling approximation. Further extensions of duality to couple hadronic matter to gravity in the Randall-Sundram brane world scenario are suggested.


2013 ◽  
Vol 22 (12) ◽  
pp. 1342011 ◽  
Author(s):  
BORUN D. CHOWDHURY

In this paper, we examine the implications of the ongoing black holes versus firewalls debate for the thermo-field dynamics of black holes by analyzing a conformal field theory (CFT) in a thermal state in the context of anti-de Sitter/CFT. We argue that the thermo-field doubled copy of the thermal CFT should be thought of not as a fictitious system, but as the image of the CFT in the heat bath. In case of strong coupling between the CFT and the heat bath, this image allows for free infall through the horizon and the system is described by a black hole. Conversely, firewalls are the appropriate dual description in case of weak interaction of the CFT with its heat bath.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Pouria Dadras

Abstract In this paper, we consider the evolution of the thermofield-double state under the double-traced operator that connects its both sides. We will compute the entanglement entropy of the resulting state using the replica trick for the large N field theory. To leading order, it can be computed from the two-point function of the theory, where, in CFTs, it is fixed by the symmetries. Due to the exponential decay of the interaction, the entanglement entropy saturates about the thermal time after the interaction is on. Next, we restrict ourselves to one dimension and assume that the theory at strong coupling is effectively described by the Schwarzian action. We then compute the coarse-grained entropy of the resulting state using the four-point function. The equality of the two entropies implies that the double-traced operators in our theory act coherently. In AdS/CFT correspondence where the thermofield-double state corresponds to a two-sided black hole, the action of a double-traced operator corresponds to shrinking or expanding the black hole in the bulk.


Sign in / Sign up

Export Citation Format

Share Document