scholarly journals Testing the holographic principle using lattice simulations

2018 ◽  
Vol 175 ◽  
pp. 08004 ◽  
Author(s):  
Raghav G. Jha ◽  
Simon Catterall ◽  
David Schaich ◽  
Toby Wiseman

The lattice studies of maximally supersymmetric Yang-Mills (MSYM) theory at strong coupling and large N is important for verifying gauge/gravity duality. Due to the progress made in the last decade, based on ideas from topological twisting and orbifolding, it is now possible to study these theories on the lattice while preserving an exact supersymmetry on the lattice. We present some results from the lattice studies of two-dimensional MSYM which is related to Type II supergravity. Our results agree with the thermodynamics of different black hole phases on the gravity side and the phase transition (Gregory–Laflamme) between them.

2017 ◽  
Vol 32 (36) ◽  
pp. 1747018 ◽  
Author(s):  
Daisuke Kadoh

The duality conjecture states that [Formula: see text]-dimensional maximally supersymmetric Yang–Mills theory at finite temperature is expected to be dual to the non extremal black [Formula: see text]-brane at large N. We perform the lattice simulations of SYM for [Formula: see text] to investigate the validity of the conjecture. We show that the conjecture is qualitatively valid by comparing lattice results of the black [Formula: see text]-branes mass with analytic expectations in the gravity side.


2008 ◽  
Vol 23 (14n15) ◽  
pp. 2161-2164 ◽  
Author(s):  
JUN NISHIMURA

We perform a direct test of the gauge/gravity duality by studying one-dimensional U (N) gauge theory with 16 supercharges at finite temperature using Monte Carlo simulation. In the 't Hooft large-N limit and in the strong coupling limit, the model is expected to have a dual gravity description in terms of the near-extremal black 0-brane solution in ten-dimensional type IIA supergravity. Our results provide the first example, in which the microscopic origin of the black hole thermodynamics is accounted for by solving explicitly the strongly coupled dynamics of the open strings attached to the D-branes.


2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Daniel Arean ◽  
Karl Landsteiner ◽  
Ignacio Salazar Landea

Quantum theory can be formulated with certain non-Hermitian Hamiltonians. An anti-linear involution, denoted by PT, is a symmetry of such Hamiltonians. In the PT-symmetric regime the non-Hermitian Hamiltonian is related to a Hermitian one by a Hermitian similarity transformation. We extend the concept of non-Hermitian quantum theory to gauge-gravity duality. Non-Hermiticity is introduced via boundary conditions in asymptotically AdS spacetimes. At zero temperature the PT phase transition is identified as the point at which the solutions cease to be real. Surprisingly at finite temperature real black hole solutions can be found well outside the quasi-Hermitian regime. These backgrounds are however unstable to fluctuations which establishes the persistence of the holographic dual of the PT phase transition at finite temperature.


2001 ◽  
Vol 16 (06) ◽  
pp. 1161-1171
Author(s):  
M. ALIMOHAMMADI ◽  
KH. SAAIDI

By generalizing the auxiliary field term in the Lagrangian of simplicial chiral models on a (d-1)-dimensional simplex, the generalized simplicial chiral models has been introduced in Ref. 1. These models can be solved analytically only in d=0 and d=2 cases at large-N limit. In the d=0 case, we calculate the eigenvalue density function in strong regime and show that the partition function computed from this density function is consistent with one calculated by path integration directly. In the d=2 case, it is shown that all V= Tr (AA†)n models have a third order phase transition, the same as the two-dimensional Yang–Mills theory.


1995 ◽  
Vol 10 (21) ◽  
pp. 1549-1563
Author(s):  
TETSUYUKI OCHIAI

We analyze multi-instanton sector in two-dimensional U(N) Yang-Mills theory on a sphere. We obtain a contour integral representation of the multi-instanton amplitude and find “neutral” configurations of the even number instantons dominate in the large-N limit. Using this representation, we calculate the 1-, 2-, 3-, 4-body interactions and the free energies for N=3, 4, 5 numerically and find that the multi-instanton interaction effect essentially contributes to the large-N phase transition discovered by Douglas and Kazakov.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Kun Meng ◽  
Da-Bao Yang ◽  
Zhan-Ning Hu

A new four-dimensional black hole solution of Einstein-Born-Infeld-Yang-Mills theory is constructed; several degenerated forms of the black hole solution are presented. The related thermodynamical quantities are calculated, with which the first law of thermodynamics is checked to be satisfied. Identifying the cosmological constant as pressure of the system, the phase transition behaviors of the black hole in the extended phase space are studied.


2020 ◽  
Vol 102 (11) ◽  
Author(s):  
Jiangfan Wang ◽  
Yung-Yeh Chang ◽  
Chung-Yu Mou ◽  
Stefan Kirchner ◽  
Chung-Hou Chung

1995 ◽  
Vol 446 (1-2) ◽  
pp. 3-15 ◽  
Author(s):  
Michael Crescimanno ◽  
Stephen G. Naculich ◽  
Howard J. Schnitzer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document