scholarly journals Hubble-induced phase transitions on the lattice with applications to Ricci reheating

2022 ◽  
Vol 2022 (01) ◽  
pp. 002
Author(s):  
Dario Bettoni ◽  
Asier Lopez-Eiguren ◽  
Javier Rubio

Abstract Using 3+1 classical lattice simulations, we follow the symmetry breaking pattern and subsequent non-linear evolution of a spectator field non-minimally coupled to gravity when the post-inflationary dynamics is given in terms of a stiff equation-of-state parameter. We find that the gradient energy density immediately after the transition represents a non-negligible fraction of the total energy budget, steadily growing to equal the kinetic counterpart. This behaviour is reflected on the evolution of the associated equation-of-state parameter, which approaches a universal value 1/3, independently of the shape of non-linear interactions. Combined with kination, this observation allows for the generic onset of radiation domination for arbitrary self-interacting potentials, significantly extending previous results in the literature. The produced spectrum at that time is, however, non-thermal, precluding the naive extraction of thermodynamical quantities like temperature. Potential identifications of the spectator field with the Standard Model Higgs are also discussed.

2006 ◽  
Vol 15 (11) ◽  
pp. 1947-1961 ◽  
Author(s):  
WEI FANG ◽  
H. Q. LU ◽  
B. LI ◽  
K. F. ZHANG

We study the Non-Linear Born–Infeld (NLBI) scalar field model and quintessence model with two different potentials (V(ϕ) = -sϕ and [Formula: see text]). We investigate the differences between these two models. We explore the equation of state parameter w and the evolution of scale factor a(t) in both the NLBI scalar field and quintessence model. The present age of universe and the transition redshift are also obtained. We use the Gold dataset of 157 SN-Ia to constrain the parameters of the two models. All the results show that the NLBI model is slightly superior to the quintessence model.


2017 ◽  
Vol 15 (01) ◽  
pp. 1830001 ◽  
Author(s):  
G. S. Khadekar ◽  
Deepti Raut

In this paper, we present two viscous models of non-perfect fluid by avoiding the introduction of exotic dark energy. We consider the first model in terms of deceleration parameter [Formula: see text] has a viscosity of the form [Formula: see text] and the other model in quadratic form of [Formula: see text] of the type [Formula: see text]. In this framework we find the solutions of field equations by using inhomogeneous equation of state of form [Formula: see text] with equation of state parameter [Formula: see text] is constant and [Formula: see text].


2021 ◽  
Vol 36 (10) ◽  
pp. 2150069
Author(s):  
Abdul Jawad ◽  
Sidra Saleem ◽  
Saba Qummer

We examine thermodynamically an extra driving term for the flat universe by applying Sharma Mittal entropy to Padmanabhan’s holographic equipartition law. Deviations from the Bekenstein–Hawking entropy by using this law, we generate an extra driving in the acceleration equation. By using the constant and parametrized equation of state parameter, we investigate the different cosmological parameters like deceleration parameter, squared speed of sound, Om-diagnostic and statefinder parameter through graphical approach. We observe compatible results with current observational data in both models. Generalized second law of thermodynamics also remains valid in both cases.


2019 ◽  
Vol 97 (7) ◽  
pp. 752-760 ◽  
Author(s):  
M. Farasat Shamir ◽  
Adnan Malik

The aim of this paper is to investigate the field equations of modified [Formula: see text] theory of gravity, where R and [Formula: see text] represent the Ricci scalar and scalar potential, respectively. We consider the Friedmann–Robertson–Walker space–time for finding some exact solutions by using different values of equation of state parameter. In this regard, different possibilities of the exact solutions have been discussed for dust universe, radiation universe, ultra-relativistic universe, sub-relativistic universe, stiff universe, and dark energy universe. Mainly power law and exponential forms of the scale factor are chosen for the analysis.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
M. Younas ◽  
Abdul Jawad ◽  
Saba Qummer ◽  
H. Moradpour ◽  
Shamaila Rani

Recently, Tsallis, Rényi, and Sharma-Mittal entropies have widely been used to study the gravitational and cosmological setups. We consider a flat FRW universe with linear interaction between dark energy and dark matter. We discuss the dark energy models using Tsallis, Rényi, and Sharma-Mittal entropies in the framework of Chern-Simons modified gravity. We explore various cosmological parameters (equation of state parameter, squared sound of speed ) and cosmological plane (ωd-ωd′, where ωd′ is the evolutionary equation of state parameter). It is observed that the equation of state parameter gives quintessence-like nature of the universe in most of the cases. Also, the squared speed of sound shows stability of Tsallis and Rényi dark energy model but unstable behavior for Sharma-Mittal dark energy model. The ωd-ωd′ plane represents the thawing region for all dark energy models.


2010 ◽  
Vol 19 (03) ◽  
pp. 305-316 ◽  
Author(s):  
AHMAD SHEYKHI

We consider the agegraphic models of dark energy in a braneworld scenario with brane–bulk energy exchange. We assume that the adiabatic equation for the dark matter is satisfied while it is violated for the agegraphic dark energy due to the energy exchange between the brane and the bulk. Our study shows that with the brane–bulk interaction, the equation of state parameter of agegraphic dark energy on the brane, wD, can have a transition from the normal state, where wD > -1, to the phantom regime, where wD < -1, while the effective equation of state for dark energy always satisfies [Formula: see text].


2019 ◽  
Vol 34 (30) ◽  
pp. 1950184
Author(s):  
M. Umair Shahzad ◽  
Nadeem Azhar ◽  
Abdul Jawad ◽  
Shamaila Rani

The reconstruction scenario of well-established dark energy models such as pilgrim dark energy model and generalized ghost dark energy with Hubble horizon and [Formula: see text] models is being considered. We have established [Formula: see text] models and analyzed their viability through equation of state parameter and [Formula: see text] (where prime denotes derivative with respect to [Formula: see text]) plane. The equation of state parameter evolutes the universe in three different phases such as quintessence, vacuum and phantom. However, the [Formula: see text] plane also describes the thawing as well as freezing region of the universe. The recent observational data also favor our results.


2018 ◽  
Vol 27 (04) ◽  
pp. 1850041 ◽  
Author(s):  
Nasim Saba ◽  
Mehrdad Farhoudi

By studying the chameleon model during inflation, we investigate whether it can be a successful inflationary model, wherein we employ the common typical potential usually used in the literature. Thus, in the context of the slow-roll approximations, we obtain the e-folding number for the model to verify the ability of resolving the problems of standard big bang cosmology. Meanwhile, we apply the constraints on the form of the chosen potential and also on the equation of state parameter coupled to the scalar field. However, the results of the present analysis show that there is not much chance of having the chameleonic inflation. Hence, we suggest that if through some mechanism the chameleon model can be reduced to the standard inflationary model, then it may cover the whole era of the universe from the inflation up to the late time.


2009 ◽  
Vol 18 (03) ◽  
pp. 389-396 ◽  
Author(s):  
UTPAL MUKHOPADHYAY ◽  
P. C. RAY ◽  
SAIBAL RAY ◽  
S. B. DUTTA CHOUDHURY

Einstein field equations under spherically symmetric space–times are considered here in connection with dark energy investigation. A set of solutions is obtained for a kinematic Λ model, viz. [Formula: see text], without assuming any a priori value for the curvature constant and the equation-of-state parameter ω. Some interesting results, such as the nature of cosmic density Ω and deceleration parameter q, have been obtained with the consideration of two-fluid structure instead of the usual unifluid cosmological model.


Sign in / Sign up

Export Citation Format

Share Document