A two-dimensional analytical modeling for channel potential and threshold voltage of short channel triple material symmetrical gate Stack (TMGS) DG-MOSFET

2016 ◽  
Vol 25 (10) ◽  
pp. 108503 ◽  
Author(s):  
Shweta Tripathi
Author(s):  
Ajay Kumar Singh

Purpose This study aims to develop a compact analytical models for undoped symmetric double-gate MOSFET based on carrier approach. Double-Gate (DG) MOSFET is a newly emerging device that can potentially further scale down CMOS technology owing to its excellent control of short channel effects, ideal subthreshold slope and free dopant-associated fluctuation effects. DG MOSFET is of two types: the symmetric DG MOSFET with two gates of identical work functions and asymmetric DG MOSFET with two gates of different work functions. To fully exploit the benefits of DG MOSFETs, the body of DG MOSFETs is usually undoped because the undoped body greatly reduces source and drain junction capacitances, which enhances the switching speed. Highly accurate and compact models, which are at the same time computationally efficient, are required for proper modeling of DG MOSFETs. Design/methodology/approach This paper presents a carrier-based approach to develop a compact analytical model for the channel potential, threshold voltage and drain current of a long channel undoped symmetric DG MOSFETs. The formulation starts from a solution of the 2-D Poisson’s equation in which mobile charge term has been included. The 2-D Poisson’s equation in rectangular coordinate system has been solved by splitting the total potential into long-channel (1-D Poisson’s equation) and short-channel components (remnant 2-D differential equation) in accordance to the device physics. The analytical model of the channel potential has been derived using Boltzmann’s statistics and carrier-based approach. Findings It is shown that the metal gate suppresses the center potential more than the poly gate. The threshold voltage increases with increasing metal work function. The results of the proposed models have been validated against the Technology Computer Aided Design simulation results with close agreement. Originality/value Compact Analytical models for undoped symmetric double gate MOSFETs.


1999 ◽  
Vol 568 ◽  
Author(s):  
M.E. Rubin ◽  
S. Saha ◽  
J. Lutze ◽  
F. Nouri ◽  
G. Scott ◽  
...  

ABSTRACTExperiment shows that the reverse short channel effect (RSCE) in nMOS devices is critically impacted by the inclusion of nitrogen in the gate oxide. A higher concentration of nitrogen results in a lessened RSCE, i.e. more threshold voltage rolloff for smaller gate lengths. We propose that the additional nitrogen reduces the interstitial recombination rate at the interface, resulting in a smaller interstitial flux and therefore less transient enhanced diffusion (TED) of boron to that interface. To test this hypothesis, we simulate boron redistribution in one and two dimensional MOS capacitor structures, as well as full nMOS devices. We then present simulations calibrated to a 0.2 pim technology currently in production.


Sign in / Sign up

Export Citation Format

Share Document