scholarly journals Fast Radio Bursts as crustal dynamical events induced by magnetic field evolution in young magnetars

Author(s):  
J.E. Horvath ◽  
M.G.B. de Avellar ◽  
L.S. Rocha ◽  
P.H.R.S. Moraes

Abstract We revisit in this work a model for repeating Fast Radio Bursts based of the release of energy provoked by the magnetic field dynamics affecting a magnetar's crust. We address the basics of such a model by solving the propagation of the perturbation approximately, and quantify the energetics and the radiation by bunches of charges in the so-called {\it charge starved} region in the magnetosphere. The (almost) simultaneous emission of newly detected X-rays from SGR 1935+2154 is tentatively associated to a reconnection behind the propagation. The strength of $f$-mode gravitational radiation excited by the event is quantified, and more detailed studies of the non-linear (spiky) soliton solutions suggested.

2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


2020 ◽  
Vol 644 ◽  
pp. A90
Author(s):  
A. Koukras ◽  
C. Marqué ◽  
C. Downs ◽  
L. Dolla

Context. EUV (EIT) waves are wavelike disturbances of enhanced extreme ultraviolet (EUV) emission that propagate away from an eruptive active region across the solar disk. Recent years have seen much debate over their nature, with three main interpretations: the fast-mode magneto-hydrodynamic (MHD) wave, the apparent wave (reconfiguration of the magnetic field), and the hybrid wave (combination of the previous two). Aims. By studying the kinematics of EUV waves and their connection with type II radio bursts, we aim to examine the capability of the fast-mode interpretation to explain the observations, and to constrain the source locations of the type II radio burst emission. Methods. We propagate a fast-mode MHD wave numerically using a ray-tracing method and the WKB (Wentzel-Kramers-Brillouin) approximation. The wave is propagated in a static corona output by a global 3D MHD Coronal Model, which provides density, temperature, and Alfvén speed in the undisturbed coronal medium (before the eruption). We then compare the propagation of the computed wave front with the observed wave in EUV images (PROBA2/SWAP, SDO/AIA). Lastly, we use the frequency drift of the type II radio bursts to track the propagating shock wave, compare it with the simulated wave front at the same instant, and identify the wave vectors that best match the plasma density deduced from the radio emission. We apply this methodology for two EUV waves observed during SOL2017-04-03T14:20:00 and SOL2017-09-12T07:25:00. Results. The simulated wave front displays a good qualitative match with the observations for both events. Type II radio burst emission sources are tracked on the wave front all along its propagation. The wave vectors at the ray-path points that are characterized as sources of the type II radio burst emission are quasi-perpendicular to the magnetic field. Conclusions. We show that a simple ray-tracing model of the EUV wave is able to reproduce the observations and to provide insight into the physics of such waves. We provide supporting evidence that they are likely fast-mode MHD waves. We also narrow down the source region of the radio burst emission and show that different parts of the wave front are responsible for the type II radio burst emission at different times of the eruptive event.


2021 ◽  
pp. 2150413
Author(s):  
Hamdy I. Abdel-Gawad

The ferromagnetism induced by an external magnetic field (EMF), in (3+1) dimensions, is governed by Kraenkel–Manna–Merle system (KMMS). A (1+1) dimension model equation was derived in the literature. The magnetic moments are parallel to the magnetic field in ferromagnetism as they are aligning in the same direction of the external field. Here, it is shown that the KMMS supports the presence of internal magnetic field. This may be argued to medium characteristics. The objective of this work is to mind multiple soliton solutions, which are obtained via the generalized together with extended unified methods. Graphical representation of the results are carried. They describe infinite soliton shapes, which arise from the multiple variation of the arbitrary functions in the solutions. It is, also, shown that internal magnetic field decays, asymptotically, to zero with time.


2018 ◽  
Vol 14 (S342) ◽  
pp. 137-140
Author(s):  
A. Ignesti ◽  
G. Brunetti ◽  
M. Gitti ◽  
S. Giacintucci

AbstractSeveral cool-core clusters are known to host a radio mini-halo, a diffuse, steep-spectrum radio source located in their cores, thus probing the presence of non-thermal components as magnetic field and relativistic particles on scales not directly influenced by the central AGN. The nature of the mechanism that produces a population of radio-emitting relativistic particles on the scale of hundreds of kiloparsecs is still unclear. At the same time, it is still debated if the central AGN may play a role in the formation of mini-halos by providing the seed of the relativistic particles. We aim to investigate these open issues by studying the connection between thermal and non-thermal components of the intra-cluster medium. We performed a point-to-point analysis of the radio and the X-ray surface brightness of a compilation of mini-halos. We find that mini-halos have super-linear scalings between radio and X-rays, with radio brightness declining more steeply than the X-ray brightness. This trend is opposite to that generally observed in giant radio halos, thus marking a possible difference in the physics of the two radio sources. Finally, using the scalings between radio and X-rays and assuming a hadronic origin of mini-halos we derive constraints on the magnetic field in the core of the hosting clusters.


2018 ◽  
Vol 611 ◽  
pp. A7 ◽  
Author(s):  
H. Siejkowski ◽  
M. Soida ◽  
K. T. Chyży

Aims. Low-mass galaxies radio observations show in many cases surprisingly high levels of magnetic field. The mass and kinematics of such objects do not favour the development of effective large-scale dynamo action. We attempted to check if the cosmic-ray-driven dynamo can be responsible for measured magnetization in this class of poorly investigated objects. We investigated how starburst events on the whole, as well as when part of the galactic disk, influence the magnetic field evolution. Methods. We created a model of a dwarf/Magellanic-type galaxy described by gravitational potential constituted from two components: the stars and the dark-matter halo. The model is evolved by solving a three-dimensional (3D) magnetohydrodynamic equation with an additional cosmic-ray component, which is approximated as a fluid. The turbulence is generated in the system via supernova explosions manifested by the injection of cosmic-rays. Results. The cosmic-ray-driven dynamo works efficiently enough to amplify the magnetic field even in low-mass dwarf/Magellanic-type galaxies. The e-folding times of magnetic energy growth are 0.50 and 0.25 Gyr for the slow (50 km s−1) and fast (100 km s−1) rotators, respectively. The amplification is being suppressed as the system reaches the equipartition level between kinetic, magnetic, and cosmic-ray energies. An episode of star formation burst amplifies the magnetic field but only for a short time while increased star formation activity holds. We find that a substantial amount of gas is expelled from the galactic disk, and that the starburst events increase the efficiency of this process.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 130
Author(s):  
Konstantinos N. Gourgouliatos ◽  
Davide De Grandis ◽  
Andrei Igoshev

Neutron stars host the strongest magnetic fields that we know of in the Universe. Their magnetic fields are the main means of generating their radiation, either magnetospheric or through the crust. Moreover, the evolution of the magnetic field has been intimately related to explosive events of magnetars, which host strong magnetic fields, and their persistent thermal emission. The evolution of the magnetic field in the crusts of neutron stars has been described within the framework of the Hall effect and Ohmic dissipation. Yet, this description is limited by the fact that the Maxwell stresses exerted on the crusts of strongly magnetised neutron stars may lead to failure and temperature variations. In the former case, a failed crust does not completely fulfil the necessary conditions for the Hall effect. In the latter, the variations of temperature are strongly related to the magnetic field evolution. Finally, sharp gradients of the star’s temperature may activate battery terms and alter the magnetic field structure, especially in weakly magnetised neutron stars. In this review, we discuss the recent progress made on these effects. We argue that these phenomena are likely to provide novel insight into our understanding of neutron stars and their observable properties.


1972 ◽  
Vol 14 ◽  
pp. 761-762
Author(s):  
G. Elwert ◽  
E. Haug

The polarization and angular distribution of solar hard X radiation above 10 keV was calculated under the assumption that the X rays originate as bremsstrahlung from energetic electrons moving in a preferred direction. The source electrons are supposed to have a power-law spectrum. These conditions are to be expected in the impulsive phase of an X-ray burst. The spiral orbits of the electrons around the magnetic field lines are taken into account.


2004 ◽  
Vol 218 ◽  
pp. 47-48
Author(s):  
Chengmin Zhang

The magnetic field strengths of most millisecond pulsars (MSPs) are about 108–9 gauss. The accretion-induced magnetic field evolution scenario here concludes that field decay is related to the accreted mass, that the minimum or bottom field stops at about 108 gauss for Eddington-limited accretion, and scales with the accretion rate as M1/2. The possibility of low field (∼ 107 gauss) MSPs has been proposed for future radio observations.


2020 ◽  
Vol 72 (4) ◽  
Author(s):  
Wen-Cong Chen

Abstract Recently, repeating fast radio bursts (FRBs) with a period of PFRB = 16.35 ± 0.18 d from FRB 180916.J0158+65 were reported. It still remains controversial how such a periodicity might arise for this FRB. In this Letter, based on an assumption of a young pulsar surrounding by a debris disk, we attempt to diagnose whether Lense–Thirring precession of the disk on the emitter can produce the observed periodicity. Our calculations indicate that the Lense–Thirring effect of a tilted disk can result in a precession period of 16 d for a mass inflow rate of 0.5–1.5 × 1018 g s−1, a pulsar spin period of 1–20 ms, and an extremely low viscous parameter α = 10−8 in the disk. The disk mass and the magnetic field of the pulsar are also constrained to be ∼10−3 M⊙ and <2.5 × 1013 G. In our model, a new-born pulsar with normal magnetic field and millisecond period would successively experience the accretion and propeller phases, and is visible as a strong radio source in the current stage. The rotational energy of such a young neutron star can provide the observed radio bursting luminosity for 400 yr.


Sign in / Sign up

Export Citation Format

Share Document