scholarly journals Four-point interfacial correlation functions in two dimensions. Exact results from field theory and numerical simulations

2021 ◽  
Vol 2021 (10) ◽  
pp. 103205
Author(s):  
Alessio Squarcini ◽  
Antonio Tinti

1989 ◽  
Vol 04 (01) ◽  
pp. 267-286 ◽  
Author(s):  
Z. HABA

It is shown that the functional integral for a σ field with values in the Poincare upper half-plane (and some other hyperbolic spaces) can be performed explicitly resulting in a conformal invariant noncanonical field theory in two dimensions.



1994 ◽  
Vol 09 (18) ◽  
pp. 3103-3141 ◽  
Author(s):  
MICHIO KAKU

We review the recent developments in the construction of string field theory in two dimensions. We analyze the bewildering number of string field theories that have been proposed, all of which correctly reproduce the correlation functions of two-dimensional string theory. These include (1) free fermion field theory, (2) collective string field theory, (3) temporal gauge string field theory and (4) nonpolynomial string field theory. We will analyze discrete states, the ω(∞) symmetry, and correlation functions in terms of these different string field theories. We will also comment on the relationship between these field theories, which is still not well understood.



1994 ◽  
Vol 08 (04) ◽  
pp. 403-415 ◽  
Author(s):  
Holger Frahm ◽  
V. E. Korepin

Exact Bethe Ansatz results on the spectrum of large but finite Hubbard chains in conjunction with methods from conformal quantum field theory can be used to obtain exact results for the asymptotic behaviour of correlation functions. We review this method and discuss some interesting consequences of the results.



1993 ◽  
Vol 08 (23) ◽  
pp. 4031-4053
Author(s):  
HOVIK D. TOOMASSIAN

The structure of the free field representation and some four-point correlation functions of the SU(3) conformal field theory are considered.



2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Alba Grassi ◽  
Zohar Komargodski ◽  
Luigi Tizzano

Abstract We study the correlation functions of Coulomb branch operators of four-dimensional $$ \mathcal{N} $$ N = 2 Superconformal Field Theories (SCFTs). We focus on rank-one theories, such as the SU(2) gauge theory with four fundamental hypermultiplets. “Extremal” correlation functions, involving exactly one anti-chiral operator, are perhaps the simplest nontrivial correlation functions in four-dimensional Quantum Field Theory. We show that the large charge limit of extremal correlators is captured by a “dual” description which is a chiral random matrix model of the Wishart-Laguerre type. This gives an analytic handle on the physics in some particular excited states. In the limit of large random matrices we find the physics of a non-relativistic axion-dilaton effective theory. The random matrix model also admits a ’t Hooft expansion in which the matrix is taken to be large and simultaneously the coupling is taken to zero. This explains why the extremal correlators of SU(2) gauge theory obey a nontrivial double scaling limit in states of large charge. We give an exact solution for the first two orders in the ’t Hooft expansion of the random matrix model and compare with expectations from effective field theory, previous weak coupling results, and we analyze the non-perturbative terms in the strong ’t Hooft coupling limit. Finally, we apply the random matrix theory techniques to study extremal correlators in rank-1 Argyres-Douglas theories. We compare our results with effective field theory and with some available numerical bootstrap bounds.



2021 ◽  
Vol 182 (3) ◽  
Author(s):  
Gernot Münster ◽  
Manuel Cañizares Guerrero

AbstractRoughening of interfaces implies the divergence of the interface width w with the system size L. For two-dimensional systems the divergence of $$w^2$$ w 2 is linear in L. In the framework of a detailed capillary wave approximation and of statistical field theory we derive an expression for the asymptotic behaviour of $$w^2$$ w 2 , which differs from results in the literature. It is confirmed by Monte Carlo simulations.



2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Simon Caron-Huot ◽  
Joshua Sandor

Abstract The Operator Product Expansion is a useful tool to represent correlation functions. In this note we extend Conformal Regge theory to provide an exact OPE representation of Lorenzian four-point correlators in conformal field theory, valid even away from Regge limit. The representation extends convergence of the OPE by rewriting it as a double integral over continuous spins and dimensions, and features a novel “Regge block”. We test the formula in the conformal fishnet theory, where exact results involving nontrivial Regge trajectories are available.



Author(s):  
Natalie Rauter

AbstractIn this study a modeling approach for short fiber-reinforced composites is presented which allows one to consider information from the microstructure of the compound while modeling on the component level. The proposed technique is based on the determination of correlation functions by the moving window method. Using these correlation functions random fields are generated by the Karhunen–Loève expansion. Linear elastic numerical simulations are conducted on the mesoscale and component level based on the probabilistic characteristics of the microstructure derived from a two-dimensional micrograph. The experimental validation by nanoindentation on the mesoscale shows good conformity with the numerical simulations. For the numerical modeling on the component level the comparison of experimentally obtained Young’s modulus by tensile tests with numerical simulations indicate that the presented approach requires three-dimensional information of the probabilistic characteristics of the microstructure. Using this information not only the overall material properties are approximated sufficiently, but also the local distribution of the material properties shows the same trend as the results of conducted tensile tests.



2019 ◽  
Vol 34 (23) ◽  
pp. 1930011 ◽  
Author(s):  
Cyril Closset ◽  
Heeyeon Kim

We give a pedagogical introduction to the study of supersymmetric partition functions of 3D [Formula: see text] supersymmetric Chern–Simons-matter theories (with an [Formula: see text]-symmetry) on half-BPS closed three-manifolds — including [Formula: see text], [Formula: see text], and any Seifert three-manifold. Three-dimensional gauge theories can flow to nontrivial fixed points in the infrared. In the presence of 3D [Formula: see text] supersymmetry, many exact results are known about the strongly-coupled infrared, due in good part to powerful localization techniques. We review some of these techniques and emphasize some more recent developments, which provide a simple and comprehensive formalism for the exact computation of half-BPS observables on closed three-manifolds (partition functions and correlation functions of line operators). Along the way, we also review simple examples of 3D infrared dualities. The computation of supersymmetric partition functions provides exceedingly precise tests of these dualities.



2019 ◽  
Vol 881 ◽  
pp. 1073-1096 ◽  
Author(s):  
Andreas D. Demou ◽  
Dimokratis G. E. Grigoriadis

Rayleigh–Bénard convection in water is studied by means of direct numerical simulations, taking into account the variation of properties. The simulations considered a three-dimensional (3-D) cavity with a square cross-section and its two-dimensional (2-D) equivalent, covering a Rayleigh number range of $10^{6}\leqslant Ra\leqslant 10^{9}$ and using temperature differences up to 60 K. The main objectives of this study are (i) to investigate and report differences obtained by 2-D and 3-D simulations and (ii) to provide a first appreciation of the non-Oberbeck–Boussinesq (NOB) effects on the near-wall time-averaged and root-mean-squared (r.m.s.) temperature fields. The Nusselt number and the thermal boundary layer thickness exhibit the most pronounced differences when calculated in two dimensions and three dimensions, even though the $Ra$ scaling exponents are similar. These differences are closely related to the modification of the large-scale circulation pattern and become less pronounced when the NOB values are normalised with the respective Oberbeck–Boussinesq (OB) values. It is also demonstrated that NOB effects modify the near-wall temperature statistics, promoting the breaking of the top–bottom symmetry which characterises the OB approximation. The most prominent NOB effect in the near-wall region is the modification of the maximum r.m.s. values of temperature, which are found to increase at the top and decrease at the bottom of the cavity.



Sign in / Sign up

Export Citation Format

Share Document