scholarly journals Effect of TiO2 Nanoparticles on Conductivity and Thermal Stability of PANI-TiO2/Glass Composite Film

2018 ◽  
Vol 1011 ◽  
pp. 012065 ◽  
Author(s):  
M Diantoro ◽  
M Z Masrul ◽  
A Taufiq
2013 ◽  
Vol 750-752 ◽  
pp. 1919-1923 ◽  
Author(s):  
Guo Xian Zhou ◽  
Ming Wei Yuan ◽  
Lin Jiang ◽  
Ming Long Yuan ◽  
Hong Li Li

The laponite-poly (L-lactide) composite films are prepared by the method of solution blending with polylactide (PLA) and laponite. The result shows that the homogeneous and smooth composite film is prepared with 1, 4-dioxane. Thermogravimetry analysis (TG) and tensile strength studies demonstrate that the thermal stability and tensile strength are improved with the laponite added. The scanning electron microscopy (SEM) measurement indicates that the pores of composite films get uniform and network structure is more and more compact with compared to pure PLA film. The present study reveals that the laponite as a complexing agent can improve the mechanical properties and thermal stability of PLA.


2008 ◽  
Vol 516 (9) ◽  
pp. 2532-2536 ◽  
Author(s):  
Kenji Kinashi ◽  
Yasuhisa Harada ◽  
Yasukiyo Ueda

2011 ◽  
Vol 284-286 ◽  
pp. 253-256 ◽  
Author(s):  
Xiao Hua Wang ◽  
Ming Nie

The polyaniline(PANI)-poly(vinyl alcoho1)(PVA) composite film doped with HC1 was prepared with PVA as matrix. Effects of PVA content, film drying temperature on properties of PANI-PVA composite film were studied. Tensile strength, elasticity, conductivity and thermal stability of PVA, HC1-PANI or PANI-PVA were compared. Tensile strength and elasticity of PVA film were the largest, its conductivity was the least. The conductivity of PANI-PVA was the largest, tensile strength and elasticity of PANI-PVA are bigger than those of HC1-PANI. The order of their thermal stability is PVA> HC1-PANI > PANI-PVA before 260°C, the order of their thermal stability is HC1-PANI>PANI-PVA> PVA after 260°C.


2007 ◽  
Vol 534-536 ◽  
pp. 865-868 ◽  
Author(s):  
Chih Feng Hsu ◽  
Pee Yew Lee

The preparation of Ti50Cu28Ni15Sn7 metallic glass composite powders was accomplished by the mechanical alloying of a pure Ti, Cu, Ni, Sn and carbon nanotube (CNT) powder mixture after 8 h milling. In the ball-milled composites, the initial CNT particles were dissolved in the Ti-based alloy glassy matrix. The thermal stability of the amorphous matrix is affected by the presence of the CNT particles. Changes in Tg and Tx suggest deviations in the chemical composition of the glassy matrix due to a partial dissolution of the CNT species in the amorphous phase. The bulk metallic glass composite was successfully prepared by vacuum hot pressing the as-milled CNT/ Ti50Cu28Ni15Sn7 metallic glass composite powders. A significant hardness increase with the CNT additions was observed for the consolidated composite compacts.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1009 ◽  
Author(s):  
Jianxiao Lu ◽  
Chuanyue Sun ◽  
Kexin Yang ◽  
Kaili Wang ◽  
Yingyi Jiang ◽  
...  

Polylactic acid (PLA) is one of the most promising bio-based materials, but its inherent hydrophobicity limits its application. Although nanocellulose (NCC) is a desirable reinforcement for PLA, the poor interface compatibility between the two has been a challenge. In this work, hydroxyapatite (HAP) modified NCC was prepared, and the obtained NCC/HAP reinforcement was used to prepare PLA/NCC-HAP composites. Different ratios of NCC to HAP were studied to explore their effects on the mechanical and thermodynamic properties of the composites. When the ratio of NCC to HAP was 30/70, the tensile strength and tensile modulus of the composite film reached 45.6 MPa and 2.34 GPa, respectively. Thermogravimetric analysis results indicate that thermal stability of the composites was significantly improved compared with pure PLA, reaching 346.6 °C. The above revelations show that NCC/HAP significantly improved the interface compatibility with PLA matrix.


2019 ◽  
Vol 123 (40) ◽  
pp. 24533-24548 ◽  
Author(s):  
Akbar Mahdavi-Shakib ◽  
Juan M. Arce-Ramos ◽  
Rachel N. Austin ◽  
Thomas J. Schwartz ◽  
Lars C. Grabow ◽  
...  

2004 ◽  
Vol 96 (11) ◽  
pp. 6663-6668 ◽  
Author(s):  
W. Li ◽  
C. Ni ◽  
H. Lin ◽  
C. P. Huang ◽  
S. Ismat Shah

2021 ◽  
pp. 009524432110061
Author(s):  
NG Salini ◽  
BG Resmi ◽  
Rosy Antony

Polymer composite film containing expanded polystyrene wastes, poly (ethylene-co-vinyl acetate), epoxidized neem oil and cassava starch was prepared by solution casting technique. The composite film was characterized by FTIR, NMR, X-ray diffraction, and FESEM analysis. The thermal stability of the polymer composite film was studied by TGA and DSC. Melting point, glass transition temperature and cold-crystallization temperature of the composite films were found to decrease with increasing percentages of epoxidized neem oil plasticizer, which point towards the enhanced segmental mobility of the polymer chain. TGA results show that plasticization has enhanced the thermal stability of the polymer composite. The prepared films show improved percentage elongation with moderate tensile strength and Young’s modulus. Soil burial test was adopted to check the biodegradability. The lower values of water absorption indicate the water-resistant nature of the films. This green synthetic approach offers a simple means of up-cycling waste thermocol in a cost-effective manner which imparts partial biodegradability with potential for packaging film and eliminates the usage of toxic chemicals.


Sign in / Sign up

Export Citation Format

Share Document