scholarly journals Properties of Polylactic Acid Reinforced by Hydroxyapatite Modified Nanocellulose

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1009 ◽  
Author(s):  
Jianxiao Lu ◽  
Chuanyue Sun ◽  
Kexin Yang ◽  
Kaili Wang ◽  
Yingyi Jiang ◽  
...  

Polylactic acid (PLA) is one of the most promising bio-based materials, but its inherent hydrophobicity limits its application. Although nanocellulose (NCC) is a desirable reinforcement for PLA, the poor interface compatibility between the two has been a challenge. In this work, hydroxyapatite (HAP) modified NCC was prepared, and the obtained NCC/HAP reinforcement was used to prepare PLA/NCC-HAP composites. Different ratios of NCC to HAP were studied to explore their effects on the mechanical and thermodynamic properties of the composites. When the ratio of NCC to HAP was 30/70, the tensile strength and tensile modulus of the composite film reached 45.6 MPa and 2.34 GPa, respectively. Thermogravimetric analysis results indicate that thermal stability of the composites was significantly improved compared with pure PLA, reaching 346.6 °C. The above revelations show that NCC/HAP significantly improved the interface compatibility with PLA matrix.

2013 ◽  
Vol 750-752 ◽  
pp. 1919-1923 ◽  
Author(s):  
Guo Xian Zhou ◽  
Ming Wei Yuan ◽  
Lin Jiang ◽  
Ming Long Yuan ◽  
Hong Li Li

The laponite-poly (L-lactide) composite films are prepared by the method of solution blending with polylactide (PLA) and laponite. The result shows that the homogeneous and smooth composite film is prepared with 1, 4-dioxane. Thermogravimetry analysis (TG) and tensile strength studies demonstrate that the thermal stability and tensile strength are improved with the laponite added. The scanning electron microscopy (SEM) measurement indicates that the pores of composite films get uniform and network structure is more and more compact with compared to pure PLA film. The present study reveals that the laponite as a complexing agent can improve the mechanical properties and thermal stability of PLA.


2012 ◽  
Vol 535-537 ◽  
pp. 154-160 ◽  
Author(s):  
Anizah Kalam ◽  
M.N. Berhan ◽  
Hanafi Ismail

Hybrid composites were prepared by incorporating oil palm fruit bunch (OPFB) fibre in the mixture of clay and polypropylene as secondary filler. OPFB and MAPP loadings were varied to investigate it effects on the performance. Tensile and impact tests were performed on the hybrid composites to evaluate their mechanical performances. Water absorption and thermal degradation tests were also conducted on the hybrid composites. Results indicated that the incorporation of OPFB in PP/PPnanoclay has decreased the thermal stability of hybrid composites. Tensile modulus of hybrid composites increased as the OPFB loading increases and further increased with the increasing of MAPP loading. Generally the tensile strength has decreased with the addition of OPFB, however slight increased was observed when the MAPP loading was increased. The impact strength has also increased with the increasing of OPFB for higher MAPP loading.


2011 ◽  
Vol 284-286 ◽  
pp. 253-256 ◽  
Author(s):  
Xiao Hua Wang ◽  
Ming Nie

The polyaniline(PANI)-poly(vinyl alcoho1)(PVA) composite film doped with HC1 was prepared with PVA as matrix. Effects of PVA content, film drying temperature on properties of PANI-PVA composite film were studied. Tensile strength, elasticity, conductivity and thermal stability of PVA, HC1-PANI or PANI-PVA were compared. Tensile strength and elasticity of PVA film were the largest, its conductivity was the least. The conductivity of PANI-PVA was the largest, tensile strength and elasticity of PANI-PVA are bigger than those of HC1-PANI. The order of their thermal stability is PVA> HC1-PANI > PANI-PVA before 260°C, the order of their thermal stability is HC1-PANI>PANI-PVA> PVA after 260°C.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2602 ◽  
Author(s):  
Mengting Lu ◽  
Wen He ◽  
Ze Li ◽  
Han Qiang ◽  
Jizhou Cao ◽  
...  

In this work, poplar veneer (PV) rotary-cut from fast-growing polar was delignified to prepare flexible transparent poplar veneer (TPV). Lignin was gradually removed from the PV and then epoxy resin filled into the delignified PV. The study mainly concerns the effect of lignin content on microstructure, light transmittance, haze, tensile strength, and thermal stability of the PVs impregnated with epoxy resin. The results indicate that the lignin could be removed completely from the PV when the delignification time was around 8 h, which was proved by FTIR spectra and chemical component detection. Moreover, according to SEM observation and XRD testing, the porosity and crystallinity of the PVs were gradually increased with the removal of lignin. Also, the optical properties measurement indicated that the light transmittance and haze of the TPVs gradually increased, and the thermal stability also became more stable as shown by thermogravimetric analysis (TG). However, the tensile strength of the TPVs declined due to the removal of lignin. Among them, TPV8 exhibited excellent optical properties, thermal stability, and tensile strength. Consequently, it has great potential to be used as a substrate in photovoltaics, solar cells, smart windows, etc.


2019 ◽  
Author(s):  
Andreas Boelke ◽  
Yulia A. Vlasenko ◽  
Mekhman S. Yusubov ◽  
Boris Nachtsheim ◽  
Pavel Postnikov

<p>The thermal stability of pseudocyclic and cyclic <i>N</i>-heterocycle-stabilized (hydroxy)aryl- and mesityl(aryl)-l<sup>3</sup>-iodanes (NHIs) through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is investigated. NHIs bearing <i>N</i>-heterocycles with a high N/C-ratio such as triazoles show among the lowest descomposition temperatures and the highest decomposition energies. A comparison of NHIs with known (pseudo)cyclic benziodoxolones is made and we further correlated their thermal stability with reactivity in a model oxygenation. </p>


2021 ◽  
Author(s):  
Xinyu Lu ◽  
Han Que ◽  
Haoquan Guo ◽  
Chenrong Ding ◽  
Xu Liu ◽  
...  

Abstract A homogeneous α-cellulose film was prepared by regeneration method from ZnCl2/CaCl2/cellulose mixed system and was further combined with sodium lignosulfonate (SLS) by crosslinking through interaction hydrogen bonds and “bridge linkages”. The physicochemical and antibacterial performance of films were all investigated and results showed that modified films exhibited stronger tensile strength, higher thermal stability, lower hydrophilic effect, better UV shielding as compared with those of pure cellulose film, and especially, better antibacterial ability derived from the presence of phenolic and sulfonate groups in SLS. This study proposed a simple and sustainable method for fabricating a multifunctional and environmentally friendly composite film by using two main lignocellulose resources as raw materials.


2021 ◽  
Vol 875 ◽  
pp. 116-120
Author(s):  
Muhammad Alamgir ◽  
Faizan Ali Ghauri ◽  
Waheed Qamar Khan ◽  
Sajawal Rasheed ◽  
Muhammad Sarfraz Nawaz ◽  
...  

In this study, the effect of SBR concentration (10 Phr, 20 Phr & 30 Phr ) on the thermal behavior of EPDM/SBR blends was studied. Thermogravimetric analysis (TGA) was used to check weight loss of samples as function of temperature by heating upto 600°C. X-ray diffraction (XRD) was performed to determine quality and % crystallinity of the elastomer blends. It was seen that % crystallinity improved with an increase in the content of SBR in EPDM/SBR blends. TGA revealed that the thermal stability of EPDM/SBR blends has improved by 17% than neat EPDM. Carbon nano-coatings produced by sputtering have no beneficial influence on thermal behaviour of elastomers.


Author(s):  
Roopa S. ◽  
Siddaramaiah

The effect of cenosphere content on the performances of polyurethane/polystyrene (PU/PS, 90/10) interpenetrating polymer network (IPN) based green composites have been studied. The PU/PS IPNs have been prepared using castor oil, toluene diisocyanate and styrene. IPN/cenosphere composites have been prepared with different weight fractions viz., 0, 5, 10, 20 and 30 wt % of cenosphere. The prepared IPN composites have been characterized by physico – mechanical, chemical and thermal behavior. The tensile strength of unfilled IPN was 1.79 MPa and a significant improvement in tensile strength (34%) was noticed for 10% cenosphere loaded IPN composite. The swelling behavior of the composites has been studied in different organic solvents. Thermal characteristics of the composites have been measured using differential scanning calorimeter, thermogravimetric analysis and dynamic mechanical analysis (DMA). A slight improvement in thermal stability was noticed for filler loaded specimens. Morphological features of cryo-fractured IPN/cenosphere green composites have been analyzed using SEM.


Sign in / Sign up

Export Citation Format

Share Document