scholarly journals Experimental and comparative study on the two-phase pressure drop of air-water mixture in U-bend and straight pipe annuli

2018 ◽  
Vol 1101 ◽  
pp. 012002
Author(s):  
R Andrzejczyk ◽  
T Muszynski
Author(s):  
Ravi S. Engineer ◽  
Hemant B. Mehta

The new correlation for two-phase pressure drop for mini channel is developed by performing experiment on adiabatic two-phase pressure drop in mini channel with 3.1 mm diameter. Air-water mixture is used as the working substance. 180°-90°-90° (straight flow) test sections made of transparent glass tubes of 3.1 mm diameter with lengths of 900 mm. The superficial velocity varies from 0.2238 m/s to 1.1876 m/s for liquid (UL) and air (UG). Two phase flow pressure drop experiment is divided into two parts. First single phase pressure drop for air and water is experimented. The diameter is verified by measuring pressure drop of the air. Single phase pressure drop for air and water is experimented first which is followed by two phase pressure drop in the same mini channel. The existing correlations for macro and mini-channels are compared with the experimental data. Using Matlab & Minitab; a new correlation has been developed to predict two-phase pressure drop in horizontal mini channels.


2014 ◽  
Vol 18 (2) ◽  
pp. 521-532 ◽  
Author(s):  
Arun Autee ◽  
Srinivasa Rao ◽  
Ravikumar Puli ◽  
Ramakant Shrivastava

Experimental results of adiabatic two-phase pressure drop in small diameter tubes are presented in this work. Air-water mixture is used as the working substance. Four test sections made of transparent acrylic tubes of different internal diameters ranging from 3.0 mm to 8.0 mm are used with different test section lengths from 150 mm to 400 mm. The investigation is carried out within the range of mass flux of water 16.58 -3050 kg/m2s, mass flux of air 8.25-204.10 kg/m2s and total mass flux 99.93-3184.69 kg/m2s. Some of the existing correlations for macro and mini-channels are compared with the experimental data. Based on the experimental data; a new correlation has been developed to predict two-phase pressure drop in horizontal channels.


2015 ◽  
Vol 19 (5) ◽  
pp. 1791-1804 ◽  
Author(s):  
Arun Autee ◽  
Srinivasa Rao ◽  
Ravikumar Puli ◽  
Ramakant Shrivastava

An experimental study of two-phase pressure drop in small diameter tubes orientated horizontally, vertically and at two other downward inclinations of ?= 300 and ? = 600 is described in this paper. Acrylic transparent tubes of internal diameters 4.0, 6.0, and 8.0 mm with lengths of 400 mm were used as the test section. Air-water mixture was used as the working fluid. Two-phase pressure drop was measured and compared with the existing correlations. These correlations are commonly used for calculation of pressure drop in macro and mini-microchannels. It is observed that the existing correlations are inadequate in predicting the two-phase pressure drop in small diameter tubes. Based on the experimental data, a new correlation has been proposed for predicting the two-phase pressure drop. This correlation is developed by modification of Chisholm parameter C by incorporating different parameters. It was found that the proposed correlation predicted two-phase pressure drop at satisfactory level.


Author(s):  
Aritra Sur ◽  
Dong Liu

Gas-liquid two-phase flow in microchannels with hydraulic diameters of 100–500 μm exhibits drastically different flow behaviors from its counterpart in conventional macroscopic channels. Two particular issues are how to determine the two-phase flow patterns and how to predict the two-phase pressure drop at given flow conditions in these microchannels. This paper presents an experimental study of adiabatic two-phase flow of air-water mixture in circular microchannels with inner diameters of 100, 180 and 324 μm, respectively, to investigate the effects of channel size and phase velocity on the two-phase flow pattern and pressure drop. The air and water superficial velocities were in the range of 0.01–120 m/s and 0.005–5 m/s. Two-phase flow patterns were visualized using highspeed photographic technique. Four basic flow patterns, namely, bubbly flow, slug flow, ring flow and annular flow, were observed. The two-phase flow maps were then constructed and the transition boundaries between different flow regimes were identified. It was found that the slug flow is the dominant two-phase flow pattern in microchannels, and the transition boundaries generally shift to regions of higher gas superficial velocities as the channel dimension decreases. The experimental measurements of two-phase pressure drop were compared to the predictions from the available two-phase models in the literature. Results show that the flow pattern-based models provide the best prediction of two-phase pressure drop in microchannels.


2013 ◽  
Author(s):  
Sung Chan Cho ◽  
Yun Wang

In this paper, two-phase flow dynamics in a micro channel with various wall conditions are both experimentally and theoretically investigated. Annulus, wavy and slug flow patterns are observed and location of liquid phase on different wall condition is visualized. The impact of flow structure on two-phase pressure drop is explained. Two-phase pressure drop is compared to a two-fluid model with relative permeability correlation. Optimization of correlation is conducted for each experimental case and theoretical solution for the flows in a circular channel is developed for annulus flow pattern showing a good match with experimental data in homogeneous channel case.


Sign in / Sign up

Export Citation Format

Share Document