scholarly journals Resistance to compression of conventional concrete alleviated through partial substitution of coarse aggregate for expanded polystyrene

2018 ◽  
Vol 1126 ◽  
pp. 012040
Author(s):  
O Hurtado Figueroa ◽  
J A Cárdenas Gutiérrez ◽  
O Gallardo
Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 556
Author(s):  
Muhammad Faisal Javed ◽  
Afaq Ahmad Durrani ◽  
Sardar Kashif Ur Rehman ◽  
Fahid Aslam ◽  
Hisham Alabduljabbar ◽  
...  

Numerous research studies have been conducted to improve the weak properties of recycled aggregate as a construction material over the last few decades. In two-stage concrete (TSC), coarse aggregates are placed in formwork, and then grout is injected with high pressure to fill up the voids between the coarse aggregates. In this experimental research, TSC was made with 100% recycled coarse aggregate (RCA). Ten percent and twenty percent bagasse ash was used as a fractional substitution of cement along with the RCA. Conventional concrete with 100% natural coarse aggregate (NCA) and 100% RCA was made to determine compressive strength only. Compressive strength reduction in the TSC was 14.36% when 100% RCA was used. Tensile strength in the TSC decreased when 100% RCA was used. The increase in compressive strength was 8.47% when 20% bagasse ash was used compared to the TSC mix that had 100% RCA. The compressive strength of the TSC at 250 °C was also determined to find the reduction in strength at high temperature. Moreover, the compressive and tensile strength of the TSC that had RCA was improved by the addition of bagasse ash.


2019 ◽  
Vol 8 (4) ◽  
pp. 12142-12146

Geopolymer concrete is one of the major developments in recent years resulting in utilization of fly ash in huge quantities and eventually reducing cement consumption and ultimately reducing emission of greenhouse gases.The geopolymer concrete is produced by using activated fly ash as binder material instead of cement. Geopolymer concrete accomplishes great strength and looks similar to conventional concrete. Recycled coarse aggregate (RCA )which is coming from demolition of construction of old and existing structures has been used in this study. The durability property; acid attack resistance with partial replacement of coarse aggregate by recycled aggregate in geopolymer and conventional concrete for the different composition such as 10, 20, 30 and 40percentage for a period of 15, 45,75 and 105 days has been evaluated. From the results it was observed that in both natural and recycled aggregate of Geopolymer concrete is highly resistant to acids such as sulphuric acid and hydrochloric acid compared to conventional concrete of respective aggregates.


InterConf ◽  
2021 ◽  
pp. 418-426
Author(s):  
Thi Ngoc Quyen Nguyen

The biggest disadvantage of conventional concrete is brittle and hard, in addition, its durability is not high. The low durability of concrete is due to the presence of calcium hydroxide at the intersection of coarse aggregate particles and hard cement powder. The introduction of coconut fiber and polyvinyl alcohol (PVA) fibers into the concrete to improve the durability and flexibility of the concrete. In addition, the article also considers the effects of other additives such as rice husk ash, silica fume to study the performance of the structure as well as its durability when joining concrete mixes to create flexible concrete movable and more flexible than conventional concrete.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Alan Sekaran ◽  
Murthi Palaniswamy ◽  
Sivagnanaprakash Balaraju

Environmental and economic factors increasingly encourage higher utility of industrial by-products. The basic objective of this study was to identify alternative source for good quality aggregates which is depleting very fast due to fast pace of construction activities in India. EAF oxidizing slag as a by-product obtained during the process in steel making industry provides great opportunity to utilize it as an alternative to normally available coarse aggregates. The primary aim of this research was to evaluate the physical, mechanical, and durability properties of concrete made with EAF oxidizing slag in addition to supplementary cementing material fly ash. This study presents the experimental investigations carried out on concrete grades of M20 and M30 with three mixes: (i) Mix A, conventional concrete mix with no material substitution, (ii) Mix B, 30% replacement of cement with fly ash, and (iii) Mix C, 30% replacement of cement with fly ash and 50% replacement of coarse aggregate with EAF oxidizing slag. Tests were conducted to determine mechanical and durability properties up to the age of 90 days. The test results concluded that concrete made with EAF oxidizing slag and fly ash (Mix C) had greater strength and durability characteristics when compared to Mix A and Mix B. Based on the overall observations, it could be recommended that EAF oxidizing slag and fly ash could be effectively utilized as coarse aggregate replacement and cement replacement in all concrete applications.


Lightweight concrete is to be treated as structural concrete (using LECA as CA), it must satisfy the density in range of 1120-1920 kg/m3 and strength not less than 20 N/mm². In order to accomplish required strength, LECA with metakaolin was used at different concentrations of (20% to 26%) by weight of cement at equal increments of 2%. Test results clearly indicates that, using LECA and metakaolin as selective substitution increases the compressive strength and durable properties. The prerequisite of using additional cementious material as metakaolin was to enhance the compressive strength, durability of LWC. Metakaolin content seems to lead high early age strength with relative increase in strength of 28 days. The effective content of metakaolin was 24% along with 60% LECA as partial substitution gave very much appreciable results. The percentage reduction in density recorded was 33%. The durable aspects such as resistance offered to acidic environment was also affirming when as compared to conventional concrete.


Author(s):  
Mohammed Sohel Ahmed

Abstract: As the demand for the structural members application in the concrete industry is continuously increasing simultaneously many a times it is required to lower the density of concrete enabling light weight which helps in easy handling of the concrete and its members. In this research an experimental endeavour has been made to equate conventional concrete with light weight by partially substituting the coarse aggregate with the pumice stone aggregate in M30 grade mix design. Simultaneously small fibres of Recron3's Polypropylene have been applied to the concrete as a reinforcing medium to minimize shrinkage cracking and improve tensile properties. The coarse aggregate was substituted by the pumice aggregate in 10, 20, 30, 40, and 50 percent and fibres respectively in 0.5, 1, 1.5, 2 and 2.5 percent. The experiment is focused on strength parameters to determine the most favourable optimum percent with respect to conventional concrete. Keywords: OPC (Ordinary Portland Cement)1, FA (Fine Aggregate)2, CA (Coarse Aggregate) 3, fck (Characteristic Compressive Strength at 28days)4, Sp. Gr (Specific Gravity)5, WC (Water Content)6, W/C (Water Cement Ratio)7, S (Standard Deviation)8, Fck (Target Average Compressive Strength at 28days)9.


Sign in / Sign up

Export Citation Format

Share Document