scholarly journals Effect of Recycled Coarse Aggregate and Bagasse Ash on Two-Stage Concrete

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 556
Author(s):  
Muhammad Faisal Javed ◽  
Afaq Ahmad Durrani ◽  
Sardar Kashif Ur Rehman ◽  
Fahid Aslam ◽  
Hisham Alabduljabbar ◽  
...  

Numerous research studies have been conducted to improve the weak properties of recycled aggregate as a construction material over the last few decades. In two-stage concrete (TSC), coarse aggregates are placed in formwork, and then grout is injected with high pressure to fill up the voids between the coarse aggregates. In this experimental research, TSC was made with 100% recycled coarse aggregate (RCA). Ten percent and twenty percent bagasse ash was used as a fractional substitution of cement along with the RCA. Conventional concrete with 100% natural coarse aggregate (NCA) and 100% RCA was made to determine compressive strength only. Compressive strength reduction in the TSC was 14.36% when 100% RCA was used. Tensile strength in the TSC decreased when 100% RCA was used. The increase in compressive strength was 8.47% when 20% bagasse ash was used compared to the TSC mix that had 100% RCA. The compressive strength of the TSC at 250 °C was also determined to find the reduction in strength at high temperature. Moreover, the compressive and tensile strength of the TSC that had RCA was improved by the addition of bagasse ash.

2008 ◽  
Vol 3 (4) ◽  
pp. 130-137 ◽  
Author(s):  
R Kumutha ◽  
K Vijai

The properties of concrete containing coarse recycled aggregates were investigated. Laboratory trials were conducted to investigate the possibility of using recycled aggregates from the demolition wastes available locally as the replacement of natural coarse aggregates in concrete. A series of tests were carried out to determine the density, compressive strength, split tensile strength, flexural strength and modulus of elasticity of concrete with and without recycled aggregates. The water cement ratio was kept constant for all the mixes. The coarse aggregate in concrete was replaced with 0%, 20%, 40%, 60%, 80% and 100% recycled coarse aggregates. The test results indicated that the replacement of natural coarse aggregates by recycled aggregates up to 40% had little effect on the compressive strength, but higher levels of replacement reduced the compressive strength. A replacement level of 100% causes a reduction of 28% in compressive strength, 36% in split tensile strength and 50% in flexural strength. For strength characteristics, the results showed a gradual decrease in compressive strength, split tensile strength, flexural strength and modulus of elasticity as the percentage of recycled aggregate used in the specimens increased. 100% replacement of natural coarse aggregate by recycled aggregate resulted in 43% savings in the cost of coarse aggregates and 9% savings in the cost of concrete.


2011 ◽  
Vol 368-373 ◽  
pp. 2185-2188
Author(s):  
Ping Hua Zhu ◽  
Xin Jie Wang ◽  
Jin Cai Feng

The properties of recycled coarsee aggregates from repeatedly recycling waste concrete were determined. In this study, five series of concrete mixtures using coarse and fine natural aggregates were prepared, which have the same objective slump value from 35mm to 50mm and different compressive strengths ranging from 25MPa to 60 MPa. These five concretes were crushed, sieved, washed with water, hot treatmented at 300°C before they were used as recycled aggregates. After that, recycled aggregate concrete (RAC) was produced with an objectively compressive strength of 30MPa, in which the recycled coarse aggregate was used as 30%, 70% and 90% replacements of natural coarse aggregate and recycled fine aggregate as 10%, 20%, and 30% replacements of natural fine aggregate. After that, these recycled concretes were used as second recycled aggregates to produce RAC with the same objectively compressive strength of 30MPa. The physical properties of coarse aggregates including apparent density, water absorption, attached mortar content and crushing value were tested and their mineral characteristics were analyzed. The results showed that the quality of recycled coarse aggregates from twicely recycling waste concrete reached the requirements from structural concrete.


2013 ◽  
Vol 639-640 ◽  
pp. 399-403
Author(s):  
Ai Guo Zhou ◽  
Jian Yin ◽  
Wei Min Song ◽  
Yi Chi

It is studied the effect of binder quantity, water binder ratio on properties of self-compacting concrete made with recycled coarse aggregates. It can be prepared C50 self-compacting concrete made with recycled coarse aggregate by adjusting send proportion, binder quantity, and mixing mineral additive. For example, when the binder quantity is 600 kg/m3, water binder ratio is 0.28, the flexural strength and compressive strength at 28 days of self-compacting concrete made with recycled coarse aggregates are 9.07 MPa and 68.47 MPa respectively.


The high and rapidly rising cost of cement has made construction expensive in developing countries where cement is commonly used. Tests were conducted in this undertaking research with the selection of necessary materials and information required for the configuration of the blend is collected. Cubes and cylinders were casted with these concrete mixtures and subjected to 7-day, 14-day and 28-day healing and determining their strength. The determined compressive strength and spilt tensile strength was compared with the conventional concrete for percentage replacements of (0%,5%,10%,15%).


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Gideon Siringi ◽  
Ali Abolmaali ◽  
Pranesh B. Aswath

Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA.


2014 ◽  
Vol 605 ◽  
pp. 147-150
Author(s):  
Seong Uk Hong ◽  
Seung Hun Kim ◽  
Yong Taeg Lee

This study used the ultrasonic pulse velocity method, one of the non-destructive test methods that does not damage the building for maintenance of to-be-constructed concrete structures using recycled aggregates in order to estimate the compressive strength of high strength concrete structure using recycled coarse aggregate and provide elementary resources for technological establishment of ultrasonic pulse velocity method. 200 test pieces of high strength concrete 40, 50MPa using recycled coarse aggregate were manufactured by replacement rates (0, 30, 50, 100%) and age (1, 7, 28, 180days), and air curing was executed to measure compressive strength and wave velocity. As the result of compressive strength measurement, the one with age of 180day and design strength of 40MPa was 43.69MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 42.82, 41.22, 37.35MPa, and 50MPa was 52.50MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 49.02, 46.66, 45.30MPa, and while it could be seen that the test piece substituted with recycled aggregate was found to have lower strength than the test piece with natural aggregate only, but it still reached the design strength to a degree. The correlation of compressive strength and ultrasonic pulse velocity was found and regression analysis was conducted. The estimation formula for compressive strength of high strength concrete using recycled coarse aggregate was found to be Fc=0.069Vp4.05, R2=0.66


Author(s):  
Moein Khoshroo ◽  
Ali Akbar Shirzadi Javid ◽  
Nima Rajabi Bakhshandeh ◽  
Mohamad Shalchiyan

In this study, the effect of using crumb rubber and recycled aggregates on the mechanical properties of concrete has been evaluated as areplacement of fine and coarse aggregates In order to add the admixtures and evaluate their combined effect, 20 different types of concrete mixture ratio were prepared. The results indicated that in those samples containing crumb rubber and recycled aggregates the compressive strength is reduced and adding fiber up to 0.1%. to these concrete samples can improve the compressive strength Also, the tensile strength of the samples mixed with crumb rubber and recycled aggregates were decreased, and with the addition of propylene fiber up to 0.4%. the tensile strength slightly increased Moreover by adding the crumb rubber to the samples the elasticity modulus was reduced but by adding fiber to samples about 0.1% and 0.2.% the modulus of elasticity of concrete in all samples were increased. According to the results, it can be said that using the combination of 5% of crumb rubber as a replacement of fine aggregate, and the combination of 35% of recycled aggregates as a replacement of coarse aggregate, and also by adding 0.1% polypropylene fiber in volumetric percentage of concrete along with adding 7% of micro silica as a replacement of cement led to the best effect on the mechanical properties of concrete.


2018 ◽  
Vol 10 (1) ◽  
pp. 26-53
Author(s):  
Junzhou Duan ◽  
Yubin Lu ◽  
Shu Zhang ◽  
Xiquan Jiang

To comparatively study the tensile properties and fracture patterns of recycled aggregate concrete with various replacement percentages (i.e. 0%, 25%, 50%, 75%, and 100%) of recycled coarse aggregate, the dynamic direct tensile tests, splitting tests, and spalling tests of recycled aggregate concrete in the strain-rate range of 100–102 s−1 were carried out using large diameter (75 mm) split Hopkinson tensile bar and pressure bar. Test results show that for recycled aggregate concrete, the quasi-static direct tensile strength is more marvelous than its quasi-static splitting strength. When recycled coarse aggregate replacement percentage is 0%–75%, the replacement percentage impact minimally on the quasi-static tensile strength of recycled aggregate concrete. In dynamic tensile tests, there exists apparent difference between the dynamic direct tensile strength and dynamic splitting. The dynamic tensile strength of recycled aggregate concrete increases with the increase of average strain-rate in all three kinds of tests. The average strain-rate affects the damage form of recycled aggregate concrete, which indicates that the recycled aggregate concrete has obvious rate sensitivity. There shows no obvious regularity between the dynamic tensile strength and the recycled coarse aggregate replacement percentage. And the indirect tensile strength calculation method used in this article offers the theoretical basis for the engineering application of recycled aggregate concrete.


2018 ◽  
Author(s):  
Erniati Bachtiar

Concrete construction technology is directed to be sustainable and ecofriendly. The waste of the candlenut shell as a substitute for the coarse aggregate of concrete mixture is known that the candlenut shell has a hard texture so it may be used as a substitute for coarse aggregates in concrete. The purpose of the research was to determine the effect of Candlenut shell as a substitute of coarse aggregate on physical properties (slump test, bleeding, segregation, volume weight) and mechanical properties (compressive strength and tensile strength) of concrete using Candlenut shell as replacement material of the coarse aggregate. The variation of the research was percentage of the Candlenut shell in the concrete mixture, that was 0%, 25%, 50%, 75% and 100% to the coarse aggregate volume in the concrete mixture. Number of specimens in reseach was each 5 pieces each variation. Testing of mechanical properties of concrete (compressive strength and tensile strength) was performed at 28 days. Testing of the concrete for compressive strength test and tensile strength on age 28 days. Concrete using candlenut shell as a substitute of coarse aggregates has decreased compressive strength respectively 11.72 MPa (37.71%) for 25% candlenut shell; 15.54 MPa (50.00%) for 50% candlenut shell; 18.35 MPa (59.02%) for 75% candlenut shell; And 18,85 MPa (60,66%) for 100% candlenut shell from of the 0% candlenut shell with compressive strength of 31.08 Mpa. Concrete using for 25% candlenut shell as a substitute for coarse aggregates decreased tensile strength respectively of 0.95 MPa (28.70%) for 25% candlenut shell; 1.21 MPa (36.56%) for 50% candlenut shell; 1.27 MPa (38.37%) for 75% candlenut shell; And 1.40 MPa (42.30%) for 100% candlenut shell from of the 0% candlenut shell with the tensile strength of BN of 3.31 MPa. The decrease in the value of compressive strength and tensile strength is strongly influenced by the increasing percentage of Candlenut shells on concrete


Author(s):  
S.E Ubi ◽  
P.O Nkra ◽  
R.B Agbor ◽  
D.E Ewa ◽  
M. Nuchal

This present research was on the comparison of the efficacious use of basalt and granite as coarse aggregates in concrete work. In order to obtain the basis for comparison, physical and structural tests were conducted on the different materials of the concrete and the concrete samples respectively. Physical test results revealed that basalt have a specific gravity of 2.8 and 2.5, while granite have a specific gravity of 2.9 and 2.6. In density, basalt have a density of 1554.55kg/m3 while granite had a density of 1463.64kg/m3. Aggregate impact test conducted on both aggregates revealed a percentage of 11.05% for basalt and 12.63% for granite. The following structural tests were carried out: compressive strength tests, flexural and tensile strength test and the comparative results are as follows. Compressive strength for basalt 36.39N/mm2 while 37.16N/mm2 for granite. 24.81N/mm2 tensile strength for basalt while 12.57N/mm2 for granite, 31.83N/mm2 flexural strength for basalt while 27.97N/mm2 for granite. From the above results, it can be deduced that basalt has higher strength properties than granite. Therefore, more suitable for coarse aggregate in achieving higher strength with some quantity of other composition of the concrete mix when compared to granite.


Sign in / Sign up

Export Citation Format

Share Document