scholarly journals Active disturbance rejection control for fractional-order PID control system research

2019 ◽  
Vol 1345 ◽  
pp. 062021
Author(s):  
Yunlong Bai ◽  
Kaixin Yang ◽  
Xiaowei Chen ◽  
Haibo Dong ◽  
Jinwei Guo
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bingyu Li ◽  
Jining Guo ◽  
Ying Fu

Induction heating systems are characterized by model uncertainty, nonlinearity, and external disturbances, and the control accuracy of the system directly affects the performance of the heated workpiece. In order to improve the temperature control accuracy and anti-interference performance of induction heating systems, this paper proposes a composite control strategy combining fractional-order PID (FOPID) and active disturbance rejection control (ADRC). Meanwhile, for the problem of too many controller tuning parameters, an improved quantum behavior particle swarm optimization (QPSO) algorithm is used to transform the nine parameters to be tuned in fractional-order PID active disturbance rejection control (FOPID-ADRC) into a minimization value optimization problem for solving. The simulation results show that the FOPID-ADRC controller improves the anti-interference capability and control accuracy of the temperature control system, and the improved QPSO algorithm has better global search capability and local optimal adaptation value.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041988356
Author(s):  
Nan Sang ◽  
Lele Chen

A linear vehicle model is commonly employed in the controller design for an active front steering (AFS). However, this simplified model has a considerable influence on the accuracy of the controller. In this article, an AFS controller using an active disturbance rejection control (ADRC) technique is proposed to prevent this problem. The AFS controller was established in MATLAB/Simulink to control the CarSim vehicle model for verification of the simulation. Under the straight-line driving disturbance condition, proportion-integration-differentiation (PID) control and ARDC substantially decreased with respect to the uncontrolled lateral offset and ADRC performed better than PID control. Under the double lane change (DLC) test working condition, the tracking error of the path, yaw rate, roll angle, and lateral acceleration, and error of the driving direction were used to evaluate the vehicle’s controllability and stability. These evaluation indexes were substantially improved by PID control and ADRC; similarly, ADRC was better than PID control. The tracking error of the ADRC in the presence of parameter variance and external disturbance was significantly smaller than that of PID control. The results have verified that the AFS controller based on ADRC can significantly improve vehicle controllability and stability.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Nixuan Liu ◽  
Siqi Cao ◽  
Juntao Fei

This paper proposed a fractional-order PID controller and active disturbance rejection control (ADRC) method for the current compensation of active power filter (APF). The control method consists of two closed loops. One is a reference current tracking loop based on the ADRC controller, which can treat the internal and external uncertainties of the system as a whole. The other is the voltage control loop with the fractional-order PID controller for more flexibility. Simulation results demonstrate that the proposed control method has a stronger robustness and higher compensating precision comparing with the double-loop PID control method.


Sign in / Sign up

Export Citation Format

Share Document