scholarly journals Effect of 316L stainless steel powder size distribution on selective laser melting process

2019 ◽  
Vol 1347 ◽  
pp. 012121
Author(s):  
Kaiping Du ◽  
Shengfeng Li ◽  
Shtn Jie ◽  
Xiangzhou Gao ◽  
Yueguang Yu
2018 ◽  
Vol 941 ◽  
pp. 698-703 ◽  
Author(s):  
Milad Ghayoor ◽  
Sunil B. Badwe ◽  
Harish Irrinki ◽  
Sundar V. Atre ◽  
Somayeh Pasebani

Water atomized and gas atomized 17-4 PH stainless steel powder were used as feedstock in selective laser melting process. Gas atomized powder revealed single martensitic phase after printing and heat treatment. As-printed water atomized powder contained dual martensitic and austenitic phase. The H900 heat treatment cycle was not effective in enhancing mechanical properties of the water atomized powder after laser melting. However, after solutionizing at 1315 oC and aging at 482oC fully martensitic structure was observed with yield strength of 1000 MPa and ultimate tensile strength of 1261 MPa which are comparable to those of gas atomized, 1254 MPa and 1300 MPa, respectively. Improved mechanical properties in water atomized powder was found to be related to presence of finer martensite. Our results imply that water atomized powder is a promising cheaper feedstock alternative to gas atomized powder.


2010 ◽  
Vol 256 (13) ◽  
pp. 4350-4356 ◽  
Author(s):  
Ruidi Li ◽  
Yusheng Shi ◽  
Zhigang Wang ◽  
Li Wang ◽  
Jinhui Liu ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. 8
Author(s):  
Hannah G. Coe ◽  
Somayeh Pasebani

Spherical powders with single-mode (D50 = 36.31 µm), and bimodal (D50,L = 36.31 µm, D50,s = 5.52 µm) particle size distribution were used in selective laser melting of 316L stainless steel in nitrogen atmosphere at volumetric energy densities ranging from 35.7–116.0 J/mm3. Bimodal particle size distribution could provide up to 2% greater tap density than single-mode powder. For low laser power (107–178 W), where relative density was <99%, bimodal feedstock resulted in higher density than single-mode feedstock. However, at higher power (>203 W), the density of bimodal-fed components decreased as the energy density increased due to vaporizing of the fine powder in bimodal distributions. Size of intergranular cell regions did not appear to vary significantly between single-mode and bimodal specimens (0.394–0.531 µm2 at 81–116 J/mm3). Despite higher packing densities in powder feedstock with bimodal particle size distribution, the results of this study suggest that differences in conduction melting and vaporization points between the two primary particle sizes would limit the maximum achievable density of additively manufactured components produced from bimodal powder size distribution.


2011 ◽  
Vol 189-193 ◽  
pp. 3664-3667 ◽  
Author(s):  
Sheng Zhang ◽  
Qing Song Wei ◽  
Guang Ke Lin ◽  
Xiao Zhao ◽  
Yu Sheng Shi

316L stainless steel parts were manufactured via selective laser melting . This work stu- dies the effects of powder characteristics such as particle size and particle shape composition on the density. It shows that the powder with a broad size distribution and using spherical fine powder can lead to an increase in the density of the loose powder and thus the densification of the laser melted powder. The aerosol powder forms parts of lower oxygen content well, and the density can reach to 90%.


2020 ◽  
Vol 31 ◽  
pp. 100904 ◽  
Author(s):  
Austin T. Sutton ◽  
Caitlin S. Kriewall ◽  
Ming C. Leu ◽  
Joseph W. Newkirk ◽  
Ben Brown

Sign in / Sign up

Export Citation Format

Share Document