scholarly journals Heat extraction from HTS tape stacks applied in a superconducting motor in different cooling conditions

2020 ◽  
Vol 1559 ◽  
pp. 012088
Author(s):  
Lukasz Tomkow ◽  
Nikolay Mineev ◽  
Anis Smara ◽  
Vicente Climente-Alarcon ◽  
Bartek A. Glowacki
2020 ◽  
Vol 1158 ◽  
pp. 1-16
Author(s):  
Chijioke Peter Egole ◽  
Henry E. Mgbemere ◽  
Gbeminiyi M. Sobamowo ◽  
Ganiyu I. Lawal

Source-based method for modelling solidification problems have been modified and presented in the current work. It coupled the effect of thermal radiation to macro-transport codes and was solved using finite volume method. The problem was formulated based on the classic continuum energy conservation equation for transient conduction controlled solidification system. Radiation heat transfer and latent heat evolution were added as source terms and solved with appropriate numerical treatments to obtain a system of linearized source terms. This circumvented the need for the application of any analytical solution to the intricate heat transfer regimes included in the model. The effect of cooling was carried out under various cooling conditions imposed on different surfaces of the mould for the solidifying metal. The resultant influence of cooling on the solid fraction evolution during static casting was then evaluated. The simulated cooling curves show that thermal radiation have no influence on the rate of heat extraction and the results show that the predicted cooling curves and solid fraction updates are similar to the results of previous models. The predicted curves at the top section of the open mould however show a little deviation due to effect of surface tension gradient forces. It was further revealed that heat transfer coefficients has more effect cooling curves and temperature contours at the lateral mould surfaces than the interior of the casting which is in agreement with theory of Newtonian cooling.


Author(s):  
L. A. Bendersky ◽  
W. J. Boettinger

Rapid solidification produces a wide variety of sub-micron scale microstructure. Generally, the microstructure depends on the imposed melt undercooling and heat extraction rate. The microstructure can vary strongly not only due to processing parameters changes but also during the process itself, as a result of recalescence. Hence, careful examination of different locations in rapidly solidified products should be performed. Additionally, post-solidification solid-state reactions can alter the microstructure.The objective of the present work is to demonstrate the strong microstructural changes in different regions of melt-spun ribbon for three different alloys. The locations of the analyzed structures were near the wheel side (W) and near the center (C) of the ribbons. The TEM specimens were prepared by selective electropolishing or ion milling.


2019 ◽  
Vol 12 (3) ◽  
pp. 213-219
Author(s):  
E. T. Ilin ◽  
S. P. Pechenkin ◽  
A. V. Svetushkov ◽  
J. A. Kozlova

During non-heating and transition period, most of cogeneration turbines operate with a lower heat extraction section actuated only due to a number of restrictions on the maximum and minimum pressure levels in the upper and lower heat extraction sections at operation of the turbine. For turbines of model T-250/300-240, the minimum permissible level of steam pressure in the upper heat extraction section, according to manufacturer data, is set to 0.06 MPa. During the non-heating and transition period, the supply water temperature is usually set in the range of 70–75°С. In order to maintain that temperature of supply water, the steam pressure in the upper heat extraction section should be below the minimum permissible level. As a result, the turbine operates with only the low-pressure heat extraction section actuated, which ensures operation without restrictions, but with a lower efficiency. The authors have introduced a set of measures, which enable to avoid those restrictions and implement two-stage heating of supply water. In this case, on connection of the upper heating extraction section, the pressure in the same is maintained at the minimum permissible level. Heat output characteristics are provided by having some of supply water delivered bypassing the group of network heaters. This operational mode enables to increase the turbine actual heat drop, to reduce the cooling steam flow into the low-pressure section and, accordingly, into the condenser, and to reduce temperature drops in network water heaters. Results of the research of operational modes for turbines of type T-250/300-240 in the non-heating and transition period with one and two-stage heating are provided. The economic efficiency of proposed operational modes was researched, which shows the effectiveness of those modes during non-heating and transition period. The limits of the efficiency of using these modes are determined.


2015 ◽  
Vol 656-657 ◽  
pp. 237-242
Author(s):  
Kenji Yamaguchi ◽  
Tsuyoshi Fujita ◽  
Yasuo Kondo ◽  
Satoshi Sakamoto ◽  
Mitsugu Yamaguchi ◽  
...  

It is well known that a series of cracks running perpendicular to the cutting edge are sometimes formed on the rake face of brittle cutting tools during intermittent cutting. The cutting tool is exposed to elevated temperatures during the periods of cutting and is cooled quickly during noncutting times. It has been suggested that repeated thermal shocks to the tool during intermittent cutting generate thermal fatigue and result in the observed thermal cracks. Recently, a high speed machining technique has attracted attention. The tool temperature during the period of cutting corresponds to the cutting speed. In addition, the cooling and lubricating conditions affect the tool temperature during noncutting times. The thermal shock applied to the tool increases with increasing cutting speed and cooling conditions. Therefore, to achieve high-speed cutting, the evaluation of the thermal shock and thermal crack resistance of the cutting tool is important. In this study, as a basis for improving the thermal shock resistance of brittle cutting tools during high-speed intermittent cutting from the viewpoint of cutting conditions, we focused on the cooling conditions of the cutting operation. An experimental study was conducted to examine the effects of noncutting time on thermal crack initiation. Thermal crack initiation was found to be restrained by reducing the noncutting time. In the turning experiments, when the noncutting time was less than 10 ms, thermal crack initiation was remarkably decreased even for a cutting speed of 500 m/min. In the milling operation, the number of cutting cycles before thermal crack initiation decreased with increasing cutting speed under conditions where the cutting speed was less than 500 m/min. However, when the cutting speed was greater than 600 m/min, thermal crack initiation was restrained. We applied the minimal quantity lubrication (MQL) coolant supply to the intermittent cutting operation. The experimental results showed that the MQL diminished tool wear compared with that under the dry cutting condition and inhibited thermal crack initiation compared with that under the wet cutting condition.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1893
Author(s):  
Kwonye Kim ◽  
Jaemin Kim ◽  
Yujin Nam ◽  
Euyjoon Lee ◽  
Eunchul Kang ◽  
...  

A ground source heat pump system is a high-performance technology used for maintaining a stable underground temperature all year-round. However, the high costs for installation, such as for boring and drilling, is a drawback that prevents the system to be rapidly introduced into the market. This study proposes a modular ground heat exchanger (GHX) that can compensate for the disadvantages (such as high-boring/drilling costs) of the conventional vertical GHX. Through a real-scale experiment, a modular GHX was manufactured and buried at a depth of 4 m below ground level; the heat exchange rate and the change in underground temperatures during the GHX operation were tracked and calculated. The average heat exchanges rate was 78.98 W/m and 88.83 W/m during heating and cooling periods, respectively; the underground temperature decreased by 1.2 °C during heat extraction and increased by 4.4 °C during heat emission, with the heat pump (HP) working. The study showed that the modular GHX is a cost-effective alternative to the vertical GHX; further research is needed for application to actual small buildings.


Author(s):  
Mohd Danish ◽  
Munish Kumar Gupta ◽  
Saeed Rubaiee ◽  
Anas Ahmed ◽  
A. Mahfouz ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 654
Author(s):  
Kholoud Mohamed Elsafy ◽  
Mohamad Zaid Saghir

In the present work, an attempt is made to investigate the performance of three fluids with forced convection in a wavy channel. The fluids are water, a nanofluid of 1% TiO2 in a water solution and a hybrid fluid which consists of 1% Al2O3-Cu nanoparticles in a water solution. The wavy channel has a porous insert with a permeability of 10 PPI, 20 PPI and 40 PPI, respectively. Since Reynolds number is less than 1000, the flow is assumed laminar, Newtonian and steady state. Results revealed that wavy channel provides a better heat enhancement than a straight channel of the same dimension. Porous material increases heat extraction at the expenses of the pressure drop. The nanofluid of 1% TiO2 in water provided the highest performance evaluation criteria.


Sign in / Sign up

Export Citation Format

Share Document