scholarly journals Forced Convection in Wavy Microchannels Porous Media Using TiO2 and Al2O3-Cu Nanoparticles in Water Base Fluids: Numerical Results

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 654
Author(s):  
Kholoud Mohamed Elsafy ◽  
Mohamad Zaid Saghir

In the present work, an attempt is made to investigate the performance of three fluids with forced convection in a wavy channel. The fluids are water, a nanofluid of 1% TiO2 in a water solution and a hybrid fluid which consists of 1% Al2O3-Cu nanoparticles in a water solution. The wavy channel has a porous insert with a permeability of 10 PPI, 20 PPI and 40 PPI, respectively. Since Reynolds number is less than 1000, the flow is assumed laminar, Newtonian and steady state. Results revealed that wavy channel provides a better heat enhancement than a straight channel of the same dimension. Porous material increases heat extraction at the expenses of the pressure drop. The nanofluid of 1% TiO2 in water provided the highest performance evaluation criteria.

Author(s):  
L D Clark ◽  
I Rosindale ◽  
K Davey ◽  
S Hinduja ◽  
P J Dooling

The effect of boiling on the rate of heat extraction by cooling channels employed in pressure die casting dies is investigated. The cooling effect of the channels is simulated using a model that accounts for subcooled nucleate boiling and transitional film boiling as well as forced convection. The boiling model provides a continuous relationship between the rate of heat transfer and temperature, and can be applied to surfaces where forced convection, subcooled nucleate boiling and transitional film boiling are taking place in close proximity. The effects of physical parameters such as flow velocity, degree of subcooling, system pressure and bulk temperature are taken into account. Experimental results are obtained using a rig that simulates the pressure die casting process. The results are compared with the model predictions and are found to show good agreement. Instrumented field tests, on an industrial die casting machine, are also reported. These tests show the beneficial effects of boiling heat transfer in the pressure die casting process, including a 75 per cent increase in the production rate for the test component.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Oktay Çiçek ◽  
A. Cihat Baytaş

Purpose The purpose of this study is to numerically investigate heat transfer and entropy generation between airframe and cabin-cargo departments in an aircraft. The conjugate forced convection and entropy generation in a cylindrical cavity within air channel partly filled with porous insulation material as simplified geometry for airframe and cabin-cargo departments are considered under local thermal non-equilibrium condition. Design/methodology/approach The non-dimensional governing equations for fluid and porous media discretized by finite volume method are solved using the SIMPLE algorithm with pressure and velocity correction. Findings The effects of the following parameters on the problem are investigated; Reynolds number, Darcy number, the size of inlet and exit cross-section, thermal conductivity ratio for solid and fluid phases, angle between the vertical symmetry axis and the end of channel wall exit and the gap between adiabatic channel wall and horizontal adiabatic wall separating cabin and cargo sections. Originality/value This paper can provide a basic perspective and framework for thermal design between the fuselage and cabin-cargo sections. The minimum total entropy generation number is calculated for various Reynolds numbers and thermal conductivity ratios. It is observed that the channel wall temperature increases for high Reynolds number, low Darcy number, narrower exit cross-section and wider the gap between channel wall and horizontal.


Author(s):  
David Calamas ◽  
Daniel Dannelley ◽  
Gyunay Keten

When certain fractal geometries are used in the design of fins or heat sinks the surface area available for heat transfer can be increased while system mass can be simultaneously decreased. The Sierpinski carpet fractal pattern, when utilized in the design of an extended surface, can provide more effective heat dissipation while simultaneously reducing mass. In order to assess the thermal performance of fractal fins for application in the thermal management of electronic devices an experimental investigation was performed. The first four fractal iterations of the Sierpinski carpet pattern, used in the design of extended surfaces, were examined in a forced convection environment. The thermal performance of the Sierpinski carpet fractal fins was quantified by the following performance metrics: efficiency, effectiveness, and effectiveness per unit mass. The fractal fins were experimentally examined in a thermal testing tunnel for a range of Reynolds numbers. As the Reynolds number increased, the fin efficiency, effectiveness and effectiveness per unit mass were found to decrease. However, as the Reynolds number increased the Nusselt number was found to similarly increase due to higher average heat transfer coefficients. The fourth iteration of the fractal pattern resulted in a 6.73% and 70.97% increase in fin effectiveness and fin effectiveness per unit mass when compared with the zeroth iteration for a Reynolds number of 6.5E3. However, the fourth iteration of the fractal pattern resulted in a 1.93% decrease in fin effectiveness and 57.09% increase in fin effectiveness per unit mass when compared with the zeroth iteration for a Reynolds number of 1.3E4. The contribution of thermal radiation to the rate of heat transfer was as high as 62.90% and 33.69% for Reynolds numbers of 6.5E3 and 1.3E4 respectively.


2006 ◽  
Vol 129 (3) ◽  
pp. 256-264 ◽  
Author(s):  
F. M. Mahfouz

In this paper laminar forced convection associated with the cross-flow of micropolar fluid over a horizontal heated circular cylinder is investigated. The conservation equations of mass, linear momentum, angular momentum and energy are solved to give the details of flow and thermal fields. The flow and thermal fields are mainly influenced by Reynolds number, Prandtl number and material parameters of micropolar fluid. The Reynolds number is considered up to 200 while the Prandtl number is fixed at 0.7. The dimensionless vortex viscosity is the only material parameter considered in this study and is selected in the range from 0 to 5. The study has shown that generally the mean heat transfer decreases as the vortex viscosity increases. The results have also shown that both the natural frequency of vortex shedding and the amplitude of oscillating lift force experience clear reduction as the vortex viscosity increases. Moreover, the study showed that there is a threshold value for vortex viscosity above which the flow over the cylinder never responds to perturbation and stays symmetric without vortex shedding. Regarding drag coefficient, the results have revealed that within the selected range of controlling parameters the drag coefficient does not show a clear trend as the vortex viscosity increases.


1994 ◽  
Vol 12 (1) ◽  
pp. 44-61
Author(s):  
Andrzej Teodorczyk ◽  
Stanislaw Wójcicki

A new experimental technique was used to investigate single fuel droplet combustion during forced convection: the burning droplet was freely suspended in the controlled air stream, without any additional support. Based on the photo-records of the burning process, the characteristics of the change of square of droplet diameter with time were made and the actual values of burning constants were determined for four hydrocarbon fuels: ben zene, n-heptane, iso-octane and toluene. The experiments were also carried out under micro-gravity and free convection conditions for the same set of fuels. The investigations have allowed the comparison of the burning mechanism of a single droplet for the three different external conditions and have compared quantitatively the burning constants. On the basis of the color pictures of the droplet burning under forced convection conditions and the temperature and gas concentration measurements within the flame, the mechanism of combus tion of fuel droplet was explained. The physical and mathematical models of the process have been proposed which included the aerodynamics of the droplet located in the high Reynolds number air stream, the energy balance of the evaporating droplet and the chemical reaction in the flow. The models have made it possible to determine the quantitative dependence of the burning con stant of different kinds of fuels on Reynolds number, the flow field parameters and the physical and chemical parameters of the liquid and its close surround ings. The calculated values of the parameters describing the burning pro cess have been compared to the experimental data and to the results reported by other investigators. The model has revealed the importance of the feed back mechanism between physical processes involved during droplet combus tion.


2017 ◽  
Author(s):  
Hector Gomez ◽  
Usama Tohid ◽  
Arturo Pacheco-Vega

In this study, numerical simulations were performed to find the current-voltage distribution for a laminar flow-based membraneless fuel cell (LFFC). The system uses formic acid and oxygen as the fuel and oxidant, respectively, and has a Y-shaped geometry with two separate inlets that merge into a single channel. The main objective of this work is to analyze the impact of geometry and operating conditions on the performance of these devices. This is done by proposing a novel wavy-channel-based geometry for the side walls, along with planar top and bottom walls, and comparing the behavior of the corresponding system to that of LFFCs based on straight-channel walls. Special attention is placed on the effect of both the amplitude of the sinusoid and its wavelength on the performance of the device. The effect of flow rates — in the range of [200, 350] μL/min — is also studied. The mathematical model is formulated by considering the Navier-Stokes equations along with Butler-Volmer and Fick’s law. For each fuel-cell configuration, the governing equations are discretized and solved using finite elements, and the solutions given in terms of the polarization curves. The model was first verified using published numerical data for a straight-channel-based LFFC. The simulations show that the performance achieved by the device, based on the proposed wavy channel geometry, is slightly better than that of the LFFC with straight channel walls. On the other hand, higher flowrates significantly improve the power density of the device. Although the current mathematical model may be useful in a variety of applications, improvements on it are currently underway to account for the effects of potential distributions on ions within the flow channel, and results from it will be reported in the future.


Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Öztop ◽  
Jay M. Khodadadi

Abstract Numerical investigation of laminar forced convection of pulsating flow in a 90-deg bifurcation was performed with the finite volume method. The inlet velocity varies sinusoidally with time while constant wall temperature is utilized. The working fluid is air with constant properties and the numerical work is conducted for a range of the Reynolds numbers (100–2000), dividing flowrates (0.3–0.7) and Strouhal numbers (0.1–10). It is observed that the amplitudes of oscillating heat transfer are damped as the value of the Strouhal number increases. The average value of Nu number rises for higher Reynolds number and the dividing flowrate for the downstream wall of the y-channel branch. As the value of the dividing flowrate increases from 0.3 to 0.7, heat transfer is less effective in the vicinity of the branch at the Reynolds number of 500. The effects of the Reynolds number on the average Nu number variation is more pronounced for the y-branch wall for different values of dividing flowrates. Resonant type behavior of average Nu number is obtained for the y-branch channel for diving flowrates of 0.3 and 0.5.


Sign in / Sign up

Export Citation Format

Share Document