scholarly journals Talking about the Application of Computer Reverse Engineering Concept in Sculpture Practice

2021 ◽  
Vol 1744 (2) ◽  
pp. 022082
Author(s):  
Xiaobo Yu
2013 ◽  
Vol 13 (04) ◽  
pp. 1350017 ◽  
Author(s):  
KUMAR S. RAY ◽  
BIMAL KUMAR RAY

This paper applies reverse engineering on the Bresenham's line drawing algorithm [J. E. Bresenham, IBM System Journal, 4, 106–111 (1965)] for polygonal approximation of digital curve. The proposed method has a number of features, namely, it is sequential and runs in linear time, produces symmetric approximation from symmetric digital curve, is an automatic algorithm and the approximating polygon has the least non-zero approximation error as compared to other algorithms.


Author(s):  
Sim S. Simandiri ◽  
K. H. Wang

Reverse engineering proceeds in the reverse of conventional manufacturing order, based on the pull system instead of the traditional push system. This paper is concerned with applying the reverse engineering concept to the development of parts. With this procedure the development of parts involves an iterative reverse process from the scanning of a developmental prototype towards the design model. The focus is on the use of two set-ups of network in providing computerized data of the prototype that are exchangeable among Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM) systems. The first set-up applies a direct approach to manipulate the scanned data in the CAM environment for generating Numerical Control (NC) programs used for machining the workpiece. The second set-up applies an indirect approach to manipulate the scanned data in a CAD environment prior to generating the NC programs. The major benefits gained from the reverse engineering application in the development of parts are also described.


2015 ◽  
Vol 808 ◽  
pp. 226-232
Author(s):  
Florin Popişter ◽  
Daniela Popescu ◽  
Andrei Șteopan ◽  
Monica Steopan

Reverse engineering process has been demonstrated to be reliable solution in solving problems regarding missing information and/or details referred to the functional areas of parts. Based on the specific activities of the chain of processes that defines the reverse engineering concept it can be collected essential information in order to reconstitute important zones of broken parts. The present paper describes an approach that was used to recover a plastic gear part. The case study provided a moulded injected plastic part that was broken during the normal function. The entire process supposed scanning the toothed area that remained and rebuild the contour that was used in CAM software as input data and especially the machining strategy used to perform both sides of the part. The machining process was employed on a CNC graving machine tool.


2008 ◽  
Vol 45 ◽  
pp. 161-176 ◽  
Author(s):  
Eduardo D. Sontag

This paper discusses a theoretical method for the “reverse engineering” of networks based solely on steady-state (and quasi-steady-state) data.


2004 ◽  
Vol 62 (12) ◽  
pp. 1057-1063
Author(s):  
A. V. Agranovskiy ◽  
R. E. Agafonov ◽  
R. A. Khadi

Author(s):  
Jeremiah Vanderlaan ◽  
Josh Richert ◽  
James Morrison ◽  
Thomas Doyle

We are a group of engineering students, in our first year of undergraduate study. We have been selected from one thousand first year students and have competed and won the PACE competition. All engineers share a common general first year, but we have been accepted into Civil and Mechanical engineering. This project was assigned as the final project in the Design and Graphics course. The project we are tasked with, called the Cornerstone Design Project, is to first dissect a product, discover how it works, dimension each part and create a fully assembled model using CAD software (Solid Edge V20 in our case). As part of discovering how it works we must benchmark it so the device can be compared with competing products. The goal of the project is to develop a full understanding of part modeling and assembly in Solid Edge, learn proper measurement techniques, and learn the process of reverse engineering and product dissection. All of these tasks were stepping stones to help us fully understand how the device, and all its components, work.


Author(s):  
Johnatan Highlander Câmara Pereira ◽  
Yale Santos ◽  
Nícolas M. F. T. S. Araújo

Author(s):  
Raditya Faisal Waliulu ◽  
Teguh Hidayat Iskandar Alam

At this paper focus on Malicous Software also known as Malware APT1 (Advance Persistent Threat) codename WEBC2-DIV the most variants malware has criteria consists of Virus, Worm, Trojan, Adware, Spyware, Backdoor either Rootkit. Although, malware could avoidance scanning antivirus but reverse engineering could be know how dangerous malware infect computer client. Lately, malware attack as a form espionage (cyberwar) one of the most topic on security internet, because of has massive impact. Forensic malware becomes indicator successfull user to realized about malware infect. This research about reverse engineering. A few steps there are scanning, suspected packet in network and analysis of malware behavior and dissambler body malware.Keyword : forensic malware, Analysis, Advance Presistent Threat, Cyberwar, dissambler


2010 ◽  
Vol 105 (6) ◽  
pp. 606-610
Author(s):  
Christine Schöne ◽  
Ralph Stelzer ◽  
Dietmar Süße ◽  
Ulf Schmidt
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document