scholarly journals Auctions in Renewable Energy and the Grid Parity Using Solar Photovoltaic Technology in Peru

2021 ◽  
Vol 1841 (1) ◽  
pp. 012007
Author(s):  
J Arredondo ◽  
M Ramos
2021 ◽  
Vol 13 (1) ◽  
pp. 396
Author(s):  
Norasikin Ahmad Ludin ◽  
Nurfarhana Alyssa Ahmad Affandi ◽  
Kathleen Purvis-Roberts ◽  
Azah Ahmad ◽  
Mohd Adib Ibrahim ◽  
...  

Sustainability has been greatly impacted by the reality of budgets and available resources as a targeted range of carbon emission reduction greatly increases due to climate change. This study analyses the technical and economic feasibility for three types of solar photovoltaic (PV) renewable energy (RE) systems; (i) solar stand-alone, a non-grid-connected building rooftop-mounted structure, (ii) solar rooftop, a grid-connected building rooftop-mounted structure, (iii) solar farm, a grid-connected land-mounted structure in three tropical climate regions. Technical scientific and economic tools, including life cycle assessment (LCA) and life cycle cost assessment (LCCA) with an integrated framework from a Malaysian case study were applied to similar climatic regions, Thailand, and Indonesia. The short-term, future scaled-up scenario was defined using a proxy technology and estimated data. Environmental locations for this scenario were identified, the environmental impacts were compared, and the techno-economic output were analysed. The scope of this study is cradle-to-grave. Levelised cost of energy (LCOE) was greatly affected due to PV performance degradation rate, especially the critical shading issues for large-scale installations. Despite the land use impact, increased CO2 emissions accumulate over time with regard to energy mix of the country, which requires the need for long-term procurement of both carbon and investment return. With regards to profitably, grid-connected roof-mounted systems achieve the lowest LCOE as compared to other types of installation, ranging from 0.0491 USD/kWh to 0.0605 USD/kWh under a 6% discounted rate. A simple payback (SPB) time between 7–10 years on average depends on annual power generated by the system with estimated energy payback of 0.40–0.55 years for common polycrystalline photovoltaic technology. Thus, maintaining the whole system by ensuring a low degradation rate of 0.2% over a long period of time is essential to generate benefits for both investors and the environment. Emerging technologies are progressing at an exponential rate in order to fill the gap of establishing renewable energy as an attractive business plan. Life cycle assessment is considered an excellent tool to assess the environmental impact of renewable energy.


Author(s):  
Rakesh Dalal ◽  
Kamal Bansal ◽  
Sapan Thapar

Rooftop solar photovoltaic(PV) installation in India have increased in last decade because of the flat 40 percent subsidy extended for rooftop solar PV systems (3 kWp and below) by the Indian government under the solar rooftop scheme. From the residential building owner's perspective, solar PV is competitive when it can produce electricity at a cost less than or equal grid electricity price, a condition referred as “grid parity”. For assessing grid parity of 3 kWp and 2 kWp residential solar PV system, 15 states capital and 19 major cities were considered  for the RET screen simulation by using solar isolation, utility grid tariff, system cost and other economic parameters. 3 kWp and 2 kWp rooftop solar PV with and without subsidy scenarios were considered for simulation using RETscreen software. We estimate that without subsidy no state could achieve grid parity for 2kWp rooftop solar PV plant. However with 3 kWp rooftop solar PV plant only 5 states could achieve grid parity without subsidy and with government subsidy number of states increased to 7, yet wide spread parity for residential rooftop solar PV is still not achieved. We find that high installation costs, subsidized utility grid supply to low energy consumer and financing rates are major barriers to grid parity.


2021 ◽  
pp. 69-76
Author(s):  
Mourad Talbi ◽  
Nawel Mensia ◽  
Hatem Ezzaouia

Nowadays, renewable energy resources play an important role in replacing conventional fossil fuel energy resources. Solar photovoltaic (PV) energy is a very promising renewable energy resource, which rapidly grew in the past few years. The main problem of the solar photovoltaic is with the variation of the operating conditions of the array, the voltage at which maximum power can be obtained from it likewise changes. In this paper, is first performed the modelling of a solar PV panel using MATLAB/Simulink. After that, a maximum power point tracking (MPPT) technique based on artificial neural network (ANN) is applied in order to control the DC-DC boost converter. This MPPT controller technique is evaluated and compared to the “perturb and observe” technique (P&O). The simulation results show that the proposed MPPT technique based on ANN gives faster response than the conventional P&O technique, under rapid variations of operating conditions. This comparative study is made in terms of temporal variations of the duty cycle (D), the output power ( out P ), the output current ( out I ), the efficiency, and the reference current ( ref I ). The efficiency, D, out P , and out I are the output of the boost DC-DC, and ref I is itsinput. The different temporal variations of the efficiency, D, ref I , out P , and out I (for the two cases: the first case, when T = 25°C and G =1000 W/m2 and the second case, when T and G are variables), show negligible oscillations around the maximum power point. The used MPPT controller based on ANN has a convergence time better than conventional P&O technique.


2014 ◽  
Vol 66 (2) ◽  
Author(s):  
Jaswar Jaswar ◽  
C. L. Siow ◽  
A. Maimun ◽  
C. Guedes Soares

Malaysian government introduced Small Renewable Energy Power (SREP) Program such as biomass, biogas, and municipal solid waste, solar photovoltaic and mini-hydroelectric facilities in 2001. In year 2010, the energy generated by biomass was achieved 18 MW and mini hydro also successes to generate around 23 MW. Green Technology and Water Malaysia are targeted by Ministry of Energy to achieve cumulative renewable energy capacity around 2080 MW at year 2020 and 21.4 GW at year 2050. This paper discusses the possibility to utilize ocean wave in Merang shore, Terengganu, Malaysia. The literature reviewed available technologies used to convert wave energy to electricity which are developing currently. The available technologies reviewed here are attenuator, overtopper, point absorbers, oscillating wave surge converter and oscillating water column. The work principle of the device was covered. Finally, the sea condition in Malaysia also studied to analyze the possibility to utilize the wave energy by using the available technologies. It is found that the mean wave height is 0.95 meter and the mean wave period is 3.5 second in the Merang shore, Terengganu, Malaysia. Attenuator type wave converter developed by Wave Star is considered as one of the possible devices to be installed at the location. From the calculation, it is obtained that the total rate electrical power possible to grid is 649 MWh a year if only one set of C5 Wave star device is installed on Merang shore, Terengganu.


2021 ◽  
Vol 7 (3) ◽  
pp. 30-33
Author(s):  
Sourabh Kedar ◽  
Mr. Santosh Singh Negi

Solar photovoltaic (PV) systems have mainly been used in the past decade. Inverter-powered photovoltaic grid topologies are widely used to meet electricity demand and to integrate forms of renewable energy into power grids. Meeting the growing demand for electricity is a major challenge today. This paper provides a detailed overview of the topological trend of inverters with connection to the photovoltaic grid, as well as the advantages, disadvantages and main characteristics of the individual inverters. For proper integration into a network, coordination between the supporting devices used for reactive power compensation and their optimal reactive power capacity for grid current stability is important.


2020 ◽  
Vol 190 ◽  
pp. 00007
Author(s):  
Dhirajsing Rughoo

The challenges to integrating a greater share of renewable energy, more specifically solar energy into the power grid in tropical islands are that these islands have a complex microclimate, high humidity and high cloud coverage. Because of this, the power output from solar photovoltaic (SPV) plants is severely affected. In this manuscript, the results of a study carried out on the performance of a 15.2 MW solar photovoltaic (SPV) plant in the island nation Mauritius is presented. The net annual yield was 22 162 MWh and has avoided 22 162 metric t of CO2 emission into the atmosphere. An attempt is also made to develop a model to forecast the power that can be generated from the SPV plants at that location. The grid operator, the national Central Electricity Board (CEB) needs to know a priori, the energy mix for the subsequent few days so that the level of operation of fossil fuel fired thermal plants can be tuned accordingly to minimize the environment pollution of this pristine island.


2019 ◽  
Author(s):  
Wandifa Saidyleigh ◽  
A. I. Olcer ◽  
R Baumler

The increase in world seaborne trade over the past decade due to global economic and population expansion has resulted in a corresponding increase of world shipping fleet with even greater size and power requirements. The bulk of these ships use cheap and widely available fossil fuels, mainly oil for operation but which has deleterious effects on the environment. In order to address environmental concerns in the shipping sector, the International Maritime Organization (IMO), responding to the global call to reduce greenhouse gases emissions from international shipping adopted technical and operational measures. These are to ensure efficient energy management on ships and have led to the application of many innovative technologies including the use of renewable energies and alternative fuels on ships to minimize fossil fuel consumption and reduce emissions. However, in order to achieve a substantial emissions reduction in international shipping, the potential applicability of a technology which utilizes a universal renewable energy resource on the largest ship type in international shipping fleet should be investigated. This research focuses on investigating the potential of Solar Photovoltaic technology on dry bulk carriers using a developed methodology and Levelised cost of energy concept as the basis for comparison. The results of this research can be used to guide decision makers about the potentials of Solar Photovoltaic technology on dry bulk carriers in general whilst its developed methodology may be useful in the specific context for determining which ships and under what circumstances solar PV is an option.


2018 ◽  
Vol 7 (3.6) ◽  
pp. 403
Author(s):  
S Mohana Krishnan ◽  
Saurav Rawat ◽  
M Surender ◽  
R Balakrishna ◽  
R Anandan

Solar photovoltaic (PV) technology has matured to become a technically viable large scale source of sustainable energy. Understanding the rooftop PV potential is critical for utility planning, accommodating grid capacity, deploying financing schemes and formulating future adaptive energy policies. The NIWE (National Institute of Wind Energy) under MNRE (Ministry of New and Renewable Energy) is an esteemed institute dedicated to Indian wind and solar renewable energy generation and monitoring. The SRRA (Solar Radiation and Resource Assessment) is a division under NIWE that is responsible for solar energy monitoring throughout India. They have created the Solar Radiation Map of India using high quality, ground measured solar data. This asks the question, whether it is possible to get a quick estimate of a solar installation. Thus, the paper explains the problems in the field of solar potential measurement and the deployment of a calculator in a mobile front platform. The mobile app would quickly and effortlessly give a rough estimate on what a solar installation could save in power consumption costs.  


2021 ◽  
pp. 151-186
Author(s):  
N.S. Rathore ◽  
N.L. Panwar

Sign in / Sign up

Export Citation Format

Share Document