scholarly journals The relationship between students’ problem solving skills and scientific attitude with students’ learning outcomes on stoichiometry at tenth grade at high school in Boyolali, Central Java, Indonesia

2021 ◽  
Vol 1842 (1) ◽  
pp. 012027
Author(s):  
Asri Kurniawati Kusuma ◽  
Budi Utami ◽  
Bakti Mulyani
2018 ◽  
Vol 54 (4) ◽  
pp. 212-218
Author(s):  
Gloria A. Carcoba Falomir

Algebra is considered an important high school course because it is recognized as the gateway to higher mathematics, college opportunities, and well-paying jobs. In the United States, most secondary schools require students to be proficient in algebra to be able to graduate from high school. One major component of algebra is word problem solving, which is used in algebra courses to teach students mathematical modeling and applied problem-solving skills. However, word problem solving is often a significantly challenging area for students with learning disabilities because it involves computing mathematical equations and implementing a myriad of cognitive processes that require conceptual knowledge. Diagrams are considered an effective and powerful visualization strategy because they help students see the hidden mathematical structure of the problem. The use of diagrams is recommended as students work toward more complex math concepts in middle school and high school.


Author(s):  
Farhat Munir ◽  
Aizza Anwar ◽  
Daisy Mui Hung Kee

The COVID-19 pandemic has forced millions of students to stay indoors and adapt to the new normal, namely distance learning at home, placing online learning in the spotlight. However, students’ motivation for online learning and its effectiveness in skill development during the COVID-19 pandemic has not been widely studied. This study examined the relationship between students’ fear of COVID-19 and students’ social presence in online learning while investigating the parallel mediating role of student psychological motivation and cognitive problem-solving skills related to online learning. The participants were 472 university students in Malaysia and Pakistan. An online data collection technique using Google Forms was employed. Faculty members of the universities were asked to share the survey with their students. Moreover, using a snowball sampling technique, students were requested to share the survey with their friends. SPSS Statistics (Version 21)  was employed to do preliminary data analysis, AMOS (Version 21) software was used to conduct confirmatory factor analysis using a maximum likelihood estimation, and Hayes’ PROCESS model was used to examine proposed hypotheses. The results show that only cognitive problem solving mediates the relationship between fear of COVID-19 and students’ social presence in online learning in Malaysian samples. In Pakistan, cognitive problem solving and psychological motivation mediate the relationship between fear of COVID-19 and students’ social presence in online learning. The study found that developing cognitive problem-solving skills and providing psychological motivation could enhance their engagement with online learning.


2018 ◽  
Vol 5 (1) ◽  
pp. 73
Author(s):  
Hanifa Prahastami Pambayun ◽  
Endah Retnowati

Penelitian ini bertujuan untuk menghasilkan dan mendeskripsikan pengembangan bahan ajar pengayaan trigonometri SMA menggunakan teknik faded examples yang berkualitas untuk meningkatkan kemampuan pemecahan masalah siswa. Kualitas bahan ajar yang dikembangkan mencakup aspek kevalidan, keefektifan, dan kepraktisan. Penelitian ini merupakan penelitian pengembangan dengan model Plomp yang mencakup tiga tahapan. (1) penelitian awal mencakup analisis kebutuhan dan analisis konteks, (2) pengembangan yang mencakup desain produk dan pembuatan produk, dan (3) evaluasi yang meliputi proses validasi dan proses implementasi. Proses pengembangan melibatkan dua ahli, satu orang guru dan 50 siswa (siswa kelas X pengayaan 1 dan X pengayaan 2) SMA IPA di Mataram. Hasil dari penelitian ini adalah bahan ajar pengayaan berupa buku guru dan buku siswa yang dikembangkan dengan menerapkan teknik faded examples. Pada buku pengayaan terdapat paket faded examples dengan jenis backward dan forward fading dimana pada akhir paket, siswa diminta untuk membuat sendiri soal sesuai dengan materi yang sedang dipelajari. Teknik ini dikembangkan oleh teori desain pembelajaran bernama Cognitive Load Theory (CLT). Hasil penelitian menunjukkan bahwa bahan ajar ini layak digunakan karena dinilai sangat baik secara isi dan penyajian oleh dosen validator, praktis oleh guru matematika dan praktis digunakan oleh siswa. Hasil ketuntasan belajar adalah sebanyak  100% siswa mencapai nilai minimal kemampuan pemecahan masalah. The application of faded examples techniques to improve student’s problem solving ability on trigonometry at high school level AbstractThis study was aimed to produce and describe the quality of the developed Trigonometric Senior High School Science Program Enrichment’s Instructional Materials using Faded-Examples Techniques to Improve Problem Solving Ability. The quality of the developed teaching materials include all aspects of validity, effectiveness, and practicality. This was a developmental research used three phases Plomp’s model which consists of: (1) preliminary studies which involved the needs and context analysis, (2) product design development, and (3) the evaluation process of product validation and implementation. The development process involves two experts as validator, one teacher, and 50 students (X pengayaan 1 and X pengayaan 2). The study results the trigonometric enrichment’s teaching materials which consists of the teacher’s textbook and the student’s textbook that was developed using the faded-examples technique. This technique based on The Cognitive Load Theory (CLT) instructional design. The results of the study showed that the quality of the developed trigonometric enrichment’s teaching materials is “very good” according to lecturer validation and “practical” according to the evaluation from the teachers and students. The results of the learning showed that 100% of the students passed the minimum grade criteria of problem solving skills.


Author(s):  
Pawan Tyagi ◽  
Christine Newman

Preparing high school students for engineering disciplines is crucial for sustainable scientific and technological developments in the USA. This paper discusses a pre-college program, which not only exposes students to various engineering disciplines but also enables them to consider engineering as the profession. The four-week long “Engineering Innovation (EI)” course is offered every year to high school students by the center of outreach, Johns Hopkins University. EI program is designed to develop problem-solving skills through extensive hands-on engineering experiments. A team consisting of an instructor, generally a PhD in Engineering, and a teaching fellow, generally a high school science teacher, closely work with students to pedagogically inculcate basics of core engineering disciplines such as civil, mechanical, electrical, materials, and chemical engineering. EI values independent problem-solving skills and simultaneously promote the team spirit among students. A number of crucial engineering aspects such as professional ethics, communications, technical writing, and understanding of common engineering principles are inculcated among high school students via well-designed individual and group activities. This paper discusses the model of EI program and its impact on students learning and their preparation for the engineering career.


Sign in / Sign up

Export Citation Format

Share Document