scholarly journals Results of the study of desert soil as a source of surface runoff formation

2021 ◽  
Vol 1889 (3) ◽  
pp. 032013
Author(s):  
M Saidova ◽  
I Yunusov ◽  
D Talipova ◽  
F Shafkarov
Author(s):  
V. Havryshchuk

Abstract. There are theoretical and experimental results of the study of the duration of surface runoff formation presented. The prospects of application of this method are defined at designing of sanitary technical measures on highways of public use and artificial constructions. There is prospective direction of increase of efficiency of sewerage rain network designing and local treatment facilities on highways defined. The issue of increasing the accuracy of hydraulic calculation has been studied. The main advantages of implementation of modern drainage solutions are investigated. It is proposed to use a monogram to determine the duration of the formation of surface concentration, in accordance with climatic characteristics.


2020 ◽  
Vol 163 ◽  
pp. 05015
Author(s):  
Oleg Tregubov ◽  
Boris Gartsman ◽  
Liudmila Lebedeva ◽  
Marina Nuteveket ◽  
Anna Tarbeeva ◽  
...  

River feed and flow regime in the Anadyr lowland remain stable with significant interannual fluctuations in the amount of summer precipitation (70-180 mm). The lack of summer precipitation is compensated by the suprapermafrost groundwater of the active layer, which is formed by meltwater from seasonal underground ice. In July 2019, complex permafrost-hydrological studies were conducted in the Ugolnaya-Dionisia river basin (Chukotka, Russia) to determine the patterns of formation and dynamics of underground and surface runoff. Seasonal active layer groundwater storage that formed as a result of the melting of seasonal ice was estimated. The territory was classified according to the unite discharge, potential and established water sources. Patterns and factors of seasonal and daily dynamics of the river regime are revealed.


Author(s):  
Nail S. Minigazimov ◽  
◽  
El’nara T. Khaydarshina ◽  
Bakhytgaley N. Batanov ◽  
◽  
...  

2019 ◽  
Vol 13 (2) ◽  
pp. 36-51 ◽  
Author(s):  
O. M. Makarieva ◽  
N. V. Nesterova ◽  
G. P. Yampolsky ◽  
E. Y. Kudymova

Abstract: the article presents the results of application of distributed deterministic hydrological model Hydrograph for estimation of maximum discharge values of different frequency at the ungauged catchment of the Khemchik River (Khemchik village, Tuva Republic). The catchment area is 1750 km2 , the average and maximum elevation — 2200 and 3600 m, respectively. Due to the lack of detailed information, a schematization of the catchment and the parameterization of the model are proposed, based on general ideas about the water balance and the processes of runoff formation of the main landscapes — rocky talus, coniferous forest and steppe. Parameters and algorithms are verified based on the results of streamflow modeling at two studied catchments: the Tapsy River — Kara-Khol (302 km2 ) and the Khemchik River — Iyme (25500 km2 ). Modelling of runoff formation processes with daily time step for the Khemchik River — Khemchik village was conducted for the period 1966–2012 using observational data at Teeli meteorological station. For the transition from daily to instant discharges, the dependence of the observed values of instant and daily streamflow at the studied gauges has been applied. On the basis of simulated discharge series, the frequency curve was built and the obtained curve was compared with the calculation data according to the standard methodology SP 33-101-2003 “Determination of the main calculated hydrological characteristics” using the analogue river. Simulated maximum instant discharges for entire frequency interval of up to 1% are 1.3–5 times higher than the values obtained by standard methodology SP 33-101-2003. The results of model calculations is indirectly confirmed by the evidences of regular flooding of the Khemchik village provided by the Ministry of Emergency Situations of the Tuva Republic, which is not predicted by the values obtained by the standard methods.


2020 ◽  
Vol 3 (2) ◽  
pp. 191
Author(s):  
Vella Maulina Kris Putri ◽  
Agata Iwan Candra ◽  
Ahmad Ridwan

The soil has an important role in construction, namely as the loading of soil on clay. It is necessary to improve the nature of the shrinkage. The authors conducted the study to increase the strength of clay by adding wood ashes and bamboo ashes. Wood ash and bamboo ash have pozzolan properties expected to add power to clay when weighted, would drop significantly.  Material compares in this study using a mix of wood ash and bamboo ash with a variation of 0%, 4%, 8%, and 12%. Meanwhile, the clay soil is taken directly from the ravaged area, from bulging villages, from the grid district. The results showed that the soil is categorized as montmorillonite soil with properties that can damage light structures and road surface runoff. After adding wood and bamboo ash, it showed optimum results of 12% of the dry fixed test items showing a liquid limit’s value at 41,00%, plastic limit at 28,43%, and the net value of plastic limit at 12,57%. When testing for solidification using native soil at a dry volume of 7,91, gr/cm rainfall can increase by 10,42 gr/cm additives after adding 12% of wood ash and bamboo ash.Tanah memiliki peran penting dalam konstruksi yaitu sebagai pembebanan tanah pada tanah liat. Perlu untuk memperbaiki sifat penyusutan. Penulis melakukan penelitian untuk meningkatkan kekuatan tanah liat dengan cara menambahkan abu kayu dan abu bambu. Abu kayu dan abu bambu memiliki sifat pozzolan yang diharapkan dapat menambah kekuatan pada tanah liat saat tertimbang, akan turun secara signifikan. Perbandingan material dalam penelitian ini menggunakan campuran abu kayu dan abu bambu dengan variasi 0%, 4%, 8%, dan 12%. Sementara itu, tanah lempung diambil langsung dari area yang rusak, dari desa-desa yang menggembung, dari grid distrik. Hasil penelitian menunjukkan bahwa tanah tersebut dikategorikan sebagai tanah montmorillonite dengan sifat yang dapat merusak struktur ringan dan aliran permukaan jalan. Setelah dilakukan penambahan abu kayu dan bambu didapatkan hasil optimum dari 12% benda uji tetap kering yang menunjukkan nilai batas cair 41,00%, batas plastis  28,43%,   dan   nilai   bersih   batas  plastis  12,57%.   Pada pengujian solidifikasi menggunakan tanah asli pada volume kering 7,91 gr / cm curah hujan dapat meningkat sebesar 10,42 gr / cm aditif setelah penambahan 12% abu kayu dan abu bambu.


Sign in / Sign up

Export Citation Format

Share Document