scholarly journals Sound absorption behavior of woven fabrics as micro perforated panel absorber

2021 ◽  
Vol 1896 (1) ◽  
pp. 012003
Author(s):  
Gunawan ◽  
I Prasetiyo ◽  
D R Adhika ◽  
F Brahmana ◽  
B Yuliarto
2020 ◽  
Vol 170 ◽  
pp. 107483
Author(s):  
Zenong Cai ◽  
Xianhui Li ◽  
Xiaoling Gai ◽  
Bin Zhang ◽  
Tuo Xing

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
C. Q. Wang ◽  
Y. S. Choy

The paper concerns the sound absorption performance of a compound absorber which consists of a parallel arrangement of multiple perforated panel absorbers of different backing cavity depths partially filled with poroelastic polymer materials. Three polymer materials are considered: expandable polystyrene (EPS) foam, polymethacrylimide (PMI) foam, and polyester fiber. The normal incidence sound absorption coefficients of the compound panel absorber are tested experimentally. Results show that the former two foams can achieve similar absorption performance to the rigid cavity configuration, while the resonances shift to lower frequencies due to the changes of effective cavity depths. It is also found that the additional attenuation by polymer foams may improve sound absorption, but the effect is marginal. For polyester fiber, results show that it performs more like a single perforated panel absorber. Finite element simulation of the compound panel absorber is also discussed, and good agreement is observed between simulated and experimental results.


2019 ◽  
Vol 14 ◽  
pp. 155892501984087
Author(s):  
Mlando Basel Mvubu ◽  
Rajesh Anandjiwala ◽  
Asis Patnaik

This article reports a study on the effect of different natural fibres, their blend ratios and varying air gaps between a needle-punched non-woven fabric and polystyrene backing on the sound absorption coefficients of the needle-punched non-woven fabrics. These parameters as well as their interactive effects were studied by variance analysis. The air gap varied from 0 to 25 mm in 5 mm increments; three natural fibre types (agave, flax and waste wool) were used; each one blended with polyester fibres in three blending ratios. The univariate test of significance showed that all three parameters and two of the three two-way interactions effects on sound absorption coefficients were significant. Only two-way interaction effect between blend ratio and air gap on sound absorption coefficient was not significant. It was found that the sound absorption coefficients increased with an increase in air gap size up to 15 mm, after which they decreased slightly as the air gap was increased further to 25 mm. In addition, the non-woven fabrics produced from the blend of waste wool and polyester fibres achieved the highest sound absorption coefficients than those of the other two natural fibres, and generally, the sound absorption coefficients increased with the increase in polyester fibre content in each blend studied.


2016 ◽  
Vol 47 (1) ◽  
pp. 3-19 ◽  
Author(s):  
Oğuz Demiryürek ◽  
Hüsnü Aydemir

Roller blind fabrics are preferred and commonly used in home and office. In general, these fabrics are produced by coating the acrylic blended material, which is known by their ultraviolet properties, onto polyester woven fabrics. In this study, in order to characterize the sound insulation properties of roller blind fabrics, coating resin having different ratios of acrylic are applied onto different polyester woven structures. Sound absorption properties of these fabrics (front and back sides) are measured through dual microphone impedance tube and investigated by statistical analyses. Regression curves are obtained and optimum fabric properties on sound absorbing property have been suggested. As a result, acrylic content in coating material, fabric type, and viol structures occurred by coating process on the woven fabric are found as effective parameters on sound absorption properties of these fabrics. Increasing acrylic content in the resin up to 40% increases the sound absorbing value but further increasing this ratio yields sound reflection from the structure, in general. Optimum sound absorption and reflection values are provided with 40% acrylic rate in coating mixture.


2019 ◽  
Vol 89 (23-24) ◽  
pp. 5119-5129 ◽  
Author(s):  
Fatih Suvari ◽  
Yasemin Dulek

This work presents the results of efforts focused on the development of sound absorptive woven fabrics by the raising process. Four woven fabrics with rib and basket weave patterns were produced for the raising process. Micro-fiber-based polyester weft yarns were used in one set of rib and basket weave fabrics, while weft yarns comprising regular polyester fibers were used in the other set. Fabrics were subjected to dyeing and heat setting prior to the raising process. Fabrics were then passed one to three times through the raising unit in order to obtain fabrics with different voluminous characteristics and different quantities of fiber ends on the fabric surface. The mass per unit area, thickness, air permeability, and sound absorption coefficient of the fabrics were measured and surface images of the fabrics were taken. The solid volume fraction and airflow resistivity of the fabrics decreased significantly after the first and second raising passes. Increasing the number of raising passes up to two passes resulted in higher sound absorption (average increment of 20% at 5 kHz) in the higher frequencies at the expense of that in the lower frequencies. Sound absorption change beyond two passes was insignificant, though. The results demonstrated that raised fabrics having a lower solid volume fraction and airflow resistivity had better acoustical properties in the higher frequency region.


2019 ◽  
Vol 11 (7) ◽  
pp. 2185 ◽  
Author(s):  
Sakagami ◽  
Okuzono ◽  
Somatomo ◽  
Funahashi ◽  
Toyoda

In this communication, the sound absorption characteristics of rectangular-shaped plane space sound absorbers without any backing structure using permeable membranes (PMs) are measured by reverberation room method. First, three types of PMs, in this study woven fabrics, are selected with different flow resistances and surface densities. They are prepared in the plane rectangular-shaped space absorbers of two different sizes. The measured results are discussed through comparison with the existing theoretical and measured results for absorbers of the other shapes or configurations. The present results and discussion demonstrate that the reverberation absorption coefficients of the proposed absorbers are low at low frequencies and converge to a moderately high value at high frequencies. Especially, ones with higher flow resistance than the air impedance converge to a value greater than 0.5, which is a theoretically estimated maximum absorption coefficient of infinite single-leaf PM. This is inferred to be attributed mainly to area effect. From these results the proposed absorbers can be used effectively despite of their very simple structure. Also it is found that the proposed absorber can offer higher sound absorption than permeable membrane absorbers of other shapes or configuration. Regarding the effect of the size, the absorbers of smaller size offer higher absorption coefficients regardless of material properties of the PMs used in the experiments.


2015 ◽  
Vol 88 ◽  
pp. 84-89 ◽  
Author(s):  
X.H. Duan ◽  
H.Q. Wang ◽  
Z.B. Li ◽  
L.K. Zhu ◽  
R. Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document