scholarly journals Parallel simulation method of GNSS multipath signal based on GPU

2021 ◽  
Vol 1971 (1) ◽  
pp. 012070
Author(s):  
Xin Kang ◽  
Rui Wang ◽  
Zhicheng Lv ◽  
Baiyu Li ◽  
Weihua Mou
Author(s):  
Moresh J. Wankhede ◽  
Neil W. Bressloff ◽  
Andy J. Keane

Computational fluid dynamics (CFD) simulations to predict and visualize the reacting flow dynamics inside a combustor require fine resolution over the spatial and temporal domain, making them computationally very expensive. The traditional time-serial approach for setting up a parallel combustor CFD simulation is to divide the spatial domain between computing nodes and treat the temporal domain sequentially. However, it is well known that spatial domain decomposition techniques are not very efficient especially when the spatial dimension (or mesh count) of the problem is small and a large number of nodes are used, as the communication costs due to data parallelism becomes significant per iteration. Hence, temporal domain decomposition has some attraction for unsteady simulations, particularly on relatively coarse spatial meshes. The purpose of this study is two-fold: (i), to develop a time-parallel CFD simulation method and apply it to solve the transient reactive flow-field in a combustor using an unsteady Reynolds-averaged Navier Stokes (URANS) formulation in the commercial CFD code FLUENT™ and (ii) to investigate its benefits relative to a time-serial approach and its potential use for combustor design optimization. The results show that the time-parallel simulation method correctly captures the unsteady combustor flow evolution but, with the applied time-parallel formulation, a clear speed-up advantage, in terms of wall-clock time, is not obtained relative to the time-serial approach. However, it is clear that the time-parallel simulation method provides multiple stages of transient combustor flow-field solution data whilst converging towards a final converged state. The availability of this resulting data could be used to seed multiple levels of fidelity within the framework of a multi-fidelity co-Kriging based design optimization strategy. Also, only a single simulation would need to be setup from which multiple fidelities are available.


2019 ◽  
Vol 147 ◽  
pp. 283-287 ◽  
Author(s):  
Xiukai Zhao ◽  
Lei Lyu ◽  
Chen Lyu ◽  
Cun Ji

2014 ◽  
Vol 522-524 ◽  
pp. 1187-1191
Author(s):  
Hong Tao Hou ◽  
Qun Li ◽  
Chao Wang ◽  
Qiang Chang ◽  
Wei Ping Wang

In this paper, we proposed a parallel simulation method for performance analysis of the Global Navigation Satellite System (GNSS) based on simulation model portability 2(SMP2) and service-oriented modeling method. GNSS is a space engineering system with a large-scale and complex structure, and the proposed method can be used to construct large complex simulation systems to gain the reusability, composability and interoperability of heterogeneous simulation resources. Firstly, the method including the conceptual framework, system architecture and system engineering process is introduced. Then the parallel model development, composition and schedule method are detailed respectively. Finally, a distributed M&S environment based on service-oriented SMP2 is designed, and an example of navigation system volume simulation is given to validate the whole method.


Author(s):  
Lu Zhao ◽  
Tu Zhen-biao ◽  
Wei Jia-ning ◽  
Zhu Yu-tong ◽  
Liu Tong-lin ◽  
...  

Methodology ◽  
2017 ◽  
Vol 13 (1) ◽  
pp. 9-22 ◽  
Author(s):  
Pablo Livacic-Rojas ◽  
Guillermo Vallejo ◽  
Paula Fernández ◽  
Ellián Tuero-Herrero

Abstract. Low precision of the inferences of data analyzed with univariate or multivariate models of the Analysis of Variance (ANOVA) in repeated-measures design is associated to the absence of normality distribution of data, nonspherical covariance structures and free variation of the variance and covariance, the lack of knowledge of the error structure underlying the data, and the wrong choice of covariance structure from different selectors. In this study, levels of statistical power presented the Modified Brown Forsythe (MBF) and two procedures with the Mixed-Model Approaches (the Akaike’s Criterion, the Correctly Identified Model [CIM]) are compared. The data were analyzed using Monte Carlo simulation method with the statistical package SAS 9.2, a split-plot design, and considering six manipulated variables. The results show that the procedures exhibit high statistical power levels for within and interactional effects, and moderate and low levels for the between-groups effects under the different conditions analyzed. For the latter, only the Modified Brown Forsythe shows high level of power mainly for groups with 30 cases and Unstructured (UN) and Autoregressive Heterogeneity (ARH) matrices. For this reason, we recommend using this procedure since it exhibits higher levels of power for all effects and does not require a matrix type that underlies the structure of the data. Future research needs to be done in order to compare the power with corrected selectors using single-level and multilevel designs for fixed and random effects.


Sign in / Sign up

Export Citation Format

Share Document