scholarly journals Analysis and Comparison on Dynamic Characteristics of CFST Arch Bridge

2021 ◽  
Vol 2009 (1) ◽  
pp. 012006
Author(s):  
Jing Ji ◽  
Yubo Lin ◽  
Ming Xu ◽  
Meihui Zhong ◽  
Liang qin Jiang
2011 ◽  
Vol 90-93 ◽  
pp. 1106-1111
Author(s):  
Hong Xia Tan ◽  
Zheng Qing Chen

This paper studies the dynamic response and the impact factor of the concrete-filled steel tubular (CFST) arch bridge named Hejiang River Bridge under the moving vehicles. Research shows that the impact factor of CFST arch bridge at the vault and 1/4 arch rib is greatly influenced by the road surface roughness (RSR), and it is increased with the grade of RSR increases, meanwhile it is different at apiece section position of the arch bridge. The impact factor doesn't vary monotonically with the speed of vehicle, it appears the maximum when the speed of vehicle is between 20-25 km/h and 35-50 km/h, and the impact factors of different cross-sections are not just the same with the changing regularity of speed. Therefore, the dynamic characteristics of different structural components should be calculated in designing CFST arch bridge for discrepant dynamic characteristics of various constructional elements.


2011 ◽  
Vol 255-260 ◽  
pp. 962-966
Author(s):  
Fan Xing ◽  
Lin Zhao ◽  
Ya Zhe Xing

In view of huge destructibility of the near-fault ground motions, structures with long natural vibration period are liable to fall into nonlinear reaction stage. Based on a full understanding of the near-fault seismic spectrum characteristics, the out-of-plane seismic response of a long span concrete-filled steel tube (CFST) arch bridge was studied in depth, and the research result could offer a reference for near-fault aseismic design.


2013 ◽  
Vol 52 ◽  
pp. 355-371 ◽  
Author(s):  
De-Yi Zhang ◽  
Xi Li ◽  
Wei-Ming Yan ◽  
Wei-Chau Xie ◽  
Mahesh D. Pandey

2013 ◽  
Vol 368-370 ◽  
pp. 1426-1430
Author(s):  
Li Xiong Gu ◽  
Rong Hui Wang

In this paper, by establishing the finite element model to study the dynamic characteristics of rigid frame single-rib arch bridge. By respectively changing structural parameters of the span ratios, and the compressive stiffness of arch, and the bending stiffness of arch, and the bending stiffness of bridge girder, and the layout of boom to find out the regularity of the structure on lateral stiffness, and vertical stiffness, and torsional stiffness as well as dynamic properties, it come out the results of that lateral stiffness of the structure is weaker, and increasing the span ratios and the compressive strength of arch are conducive to the improvement of the overall stiffness, and improving the bending strength of arch and layout of boom are less effect on the overall stiffness and mode shape.


2011 ◽  
Vol 243-249 ◽  
pp. 1830-1834
Author(s):  
Ke Ke Peng

As to sensitivity analysis, based on traditional sensitive factor definition and concept of reliability vector, two kinds of sensitivity problems are putted forward in this paper. And factor sensitivity matrix is defined. As far as large and complex structures are concerned, factor sensitivity matrix of incremental form is given. Furthermore, sensitivity surface is putted forward. ANSYS PDS(ANSYS Probabilistic Design System)can solve the above two kinds of sensitivity problems efficiently. The example bridge is a CFST arch bridge with 83.6 meter-span, which operated for 10 years. The analysis result shows that the definitions enhance the maneuverability of sensitivity analysis, and ANSYS PDS is practical.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhen Liu ◽  
Shibo Zhang

Seismic analysis of concrete-filled steel tube (CFST) arch bridge based on finite element method is a time-consuming work. Especially when uncertainty of material and structural parameters are involved, the computational requirements may exceed the computational power of high performance computers. In this paper, a seismic analysis method of CFST arch bridge based on artificial neural network is presented. The ANN is trained by these seismic damage and corresponding sample parameters based on finite element analysis. In order to obtain more efficient training samples, a uniform design method is used to select sample parameters. By comparing the damage probabilities under different seismic intensities, it is found that the damage probabilities of the neural network method and the finite element method are basically the same. The method based on ANN can save a lot of computing time.


2012 ◽  
Vol 226-228 ◽  
pp. 1679-1682
Author(s):  
Yi Song Zou ◽  
Hai Tao Hou ◽  
Wei Peng

Based on reliability theory, the application calculation method of Concrete Filled Steel Tube (CFST) arch bridge system reliability index is studied. Select the most unfavorable load distribution in working condition of maximum moment and deflection at the mid-span, from the angle of strain energy, calculated the weights of CFST arch ribs component. On the basis of the grading standards of reliability assessment of the existing bridge components and the critical structures, CFST arch bridge system reliability assessment grading standards are constructed. CFST arch bridges reliability index are evaluated from two aspects (the arch ribs and segment) in this article. As the CFST arch bridge locates in the marine environment, corrosion environment is the serious level of C5-M, steel pipe corrosion is the major diseases of CFST, arch rib which on the corrosion conditions were assessed. The results show that the method can effectively assess the situation of CFST arch bridge.


2011 ◽  
Vol 225-226 ◽  
pp. 823-826
Author(s):  
Yu Feng Zhang ◽  
Guo Fu Sun

As a part of virtual simulation of construction processes, this paper deals with the quantitative risk analysis for the construction phases of the CFST arch bridge. The main objectives of the study are to evaluate the risks by considering an ultimate limit state for the fracture of cable wires and to evaluate the risks for a limit state for the erection control during construction stages. Many researches have been evaluated the safety of constructed bridges, the uncertainties of construction phases have been ignored. This paper adopts the 3D finite element program ANSYS to establish the space model of CFST Arch Bridge, and to calculate the linear, the geometrical nonlinear and the double nonlinear buckling safety factors under the six different lode cases. Then the bridge’s risks are evaluated according to the results calculated which provide a reference for design of similar project.


2011 ◽  
Vol 295-297 ◽  
pp. 1079-1087
Author(s):  
Guo Hui Cao ◽  
Zhen Yu Xie ◽  
Ming Cai Wen ◽  
Ran He

The ultimate bearing capacity test is carried on CFST arch bridge model with CFRP slings, and the deflection of tie-beams, CFST arch, crossbeams, decks is also tested. Studies have shown that before the sliping of 4# CFRP sling, the deflection growth of east and west tie-beam, east and west arch both has good symmetry. The deflection growth of crossbeams and decks also has good symmetry, but after the sliping of 4# CFRP sling(located at the middle of west tie-beam), the structural internal forces redistribution appeared. The deflection of west tie-beam increased suddenly, and the mid-span deflection of west tie-beam is larger than that of east tie-beam by 14.6%. The mid-span deflection of east arch is larger than that of west arch by 9.9%. The deflection of crossbeam at 3L/8 and L/4 sections are respectively larger than those of crossbeam at 5L/8 and 3L/4 sections by 13.8% and 5.3%, The deflection of 3#, 2# and 1# decks are respectively larger than those of 4#, 5# and 6# decks by 7.8%, 13.2% and 17.1%. After the snapping of 10# CFRP sling(located at 3L/8 section of east tie-beam), the structural internal forces would appear redistribution. The deflection of east tie-beam would increase suddenly. The mid-span deflection of east tie-beam is larger than that of west tie-beam by 31.7%, and the mid-span deflection of east arch is larger than that of west arch by 21.3%. The deflection of crossbeam at 3L/8 and L/4 sections are respectively larger than those of 5L/8 and 3L/4 sections by 24.7% and 22.5%. The deflection of 3#, 2# and 1# decks are respectively larger than those of 4#, 5# and 6# decks by 16.2%, 24.5% and 28.6%.


Sign in / Sign up

Export Citation Format

Share Document