Risk Analysis for the Construction Phases of Long-Span CFST Arch Bridge Based on Finite Element Analysis

2011 ◽  
Vol 225-226 ◽  
pp. 823-826
Author(s):  
Yu Feng Zhang ◽  
Guo Fu Sun

As a part of virtual simulation of construction processes, this paper deals with the quantitative risk analysis for the construction phases of the CFST arch bridge. The main objectives of the study are to evaluate the risks by considering an ultimate limit state for the fracture of cable wires and to evaluate the risks for a limit state for the erection control during construction stages. Many researches have been evaluated the safety of constructed bridges, the uncertainties of construction phases have been ignored. This paper adopts the 3D finite element program ANSYS to establish the space model of CFST Arch Bridge, and to calculate the linear, the geometrical nonlinear and the double nonlinear buckling safety factors under the six different lode cases. Then the bridge’s risks are evaluated according to the results calculated which provide a reference for design of similar project.

2011 ◽  
Vol 255-260 ◽  
pp. 3070-3076 ◽  
Author(s):  
Qiang Chen ◽  
Ling Yong Liu

This paper was combined with a real bridge to construct a carbon fiber arch bridge scale test model according to similar principles, thereby testing and researching on its mechanical properties. Space finite element analysis software Midas / Civil was adopted for space simulation study of all working conditions in each use stage of the model bridge. The test results showed that: CFRP hanger tension and load in all working conditions of the model experience were basically changed in a linear mode, its working conditions were normal, all working conditions were basically matched with the theoretical calculation values except the hanger whose specific anchors were provided with slight slip, which indicates that it is feasible to allocate CFRP hanger in bowstring arch bridge while indicating that calculation and analysis results of finite element program can be used to guide loading work, measuring point selection and other work of the model bridge, and the experimental data and analysis results are correct.


2011 ◽  
Vol 214 ◽  
pp. 397-401
Author(s):  
De Ling Wang ◽  
Jiang Hai Shen

The counterforce wall and pedestral is a complex system. Computer aided design technology is used to design and analyze this reinforced and prestressed concrete structure. Firstly CAD design program is used to design a representative wall section as a separate component. It helps doing ultimate limit state calculation and serviceability limit state checking computation. The prestress on concrete induced by prestressing steel according to construction method is also computed. Secondly, a finite element program is used to analyze the whole system. The prestress computed by CAD design program is regarded as external load. Simulation technology is also described in this paper. The stress, strain and deformation of the whole prestressed system are calculated and checked. Moreover, dynamic structural analysis is done by finite element program. Then vibration frequencies and modes can be obtained. By combining CAD design with finite element program, this complex system can be designed reasonably and effectively.


1978 ◽  
Vol 22 (04) ◽  
pp. 238-244
Author(s):  
T. H. Soreide ◽  
T. Moan ◽  
N.T. Nordsve

The behavior and design of stiffened plates in the ultimate limit state are studied. A finite element formulation for panel behavior considering general loading conditions, material properties, geometry, boundary conditions, and initial deflections is presented. Some results obtained by a finite element program are displayed and discussed. The problems considered comprise perfect and initially deflected plate-strips subjected to lateral pressure, single-span and two-span beam-columns under axial loading, and failure of a stiffened plate designed for simultaneous local and global buckling. Finally, design criteria are briefly discussed and recommendations for future work are given.


2014 ◽  
Vol 501-504 ◽  
pp. 731-735
Author(s):  
Li Zhang ◽  
Kang Li

This paper analyzes the influence degree of related design parameters of wire-mesh frame wallboard on deformation through finite element program, providing theoretical basis for the design and test of steel wire rack energy-saving wallboard.


Author(s):  
Makoto Tanabe ◽  
Hajime Wakui ◽  
Nobuyuki Matsumoto

Abstract A finite element formulation to solve the dynamic behavior of high-speed Shinkansen cars, rail, and bridge is given. A mechanical model to express the interaction between wheel and rail is described, in which the impact of the rail on the flange of wheel is also considered. The bridge is modeled by using various finite elements such as shell, beam, solid, spring, and mass. The equations of motions of bridge and Shinkansen cars are solved under the constitutive and constraint equations to express the interaction between rail and wheel. Numerical method based on a modal transformation to get the dynamic response effectively is discussed. A finite element program for the dynamic response analysis of Shinkansen cars, rail, and bridge at the high-speed running has been developed. Numerical examples are also demonstrated.


1991 ◽  
Vol 226 ◽  
Author(s):  
Yi-Hsin Pao ◽  
Kuan-Luen Chen ◽  
An-Yu Kuo

AbstractA nonlinear and time dependent finite element analysis was performed on two surface mounted electronic devices subjected to thermal cycling. Constitutive equations accounting for both plasticity and creep for 37Pb/63Sn and 90Pb/10Sn solders were assumed and implemented in a finite element program ABAQUS with the aid of a user subroutine. The FE results of 37Pb/63Sn solder joints were in reasonably good agreement with the experimental data by Hall [19]. In the case of 9OPb/1OSn solder in a multilayered transistor stack, the FE results showed the existence of strong peel stress near the free edge of the joint, in addition to the anticipated shear stress. The effect of such peel stress on the crack initiation and growth as a result of thermal cycling was discussed, together with the singular behavior of both shear and peel stresses near the free edge.


2017 ◽  
Vol 24 (3) ◽  
pp. 415-422 ◽  
Author(s):  
Ke Chun Shen ◽  
Guang Pan ◽  
JiangFeng Lu

AbstractThe buckling and layer failure characteristics of composite laminated cylinders subjected to hydrostatic pressure were investigated through finite element analysis for underwater vehicle application. The Tsai-Wu failure criteria were used as the failure criteria for the buckling analysis. A sensitivity analysis was conducted to research the influence of the number of elements on the critical buckling pressure. ANSYS, a finite element program, successfully predicted the buckling pressure with 5.3–27.8% (linear) and 0.3–22.5% (nonlinear) deviation from experimental results. The analysis results showed that the cylinders can carry more pressure after a slight decrease in pressure and recovery of the supporting load. For layer failure analysis, it was found that the failure that occurred in the 0° layer was more serious than that in the 90° layer within the neighboring layers at the inner layers (nos. 1–7) and outer layers (nos. 8–24).


2003 ◽  
Vol 125 (4) ◽  
pp. 393-402 ◽  
Author(s):  
S. A. Karamanos ◽  
E. Giakoumatos ◽  
A. M. Gresnigt

The paper investigates the response of elbows under in-plane bending and pressure, through nonlinear finite element tools, supported by experimental results from real-scale tests. The finite element analysis is mainly based on a nonlinear three-node “tube element,” capable of describing elbow deformation in a rigorous manner, considering geometric and material nonlinearities. Furthermore, a nonlinear shell element from a general-purpose finite element program is employed in some special cases. Numerical results are compared with experimental data from steel elbow specimens. The comparison allows the investigation of important issues regarding deformation and ultimate capacity of elbows, with emphasis on relatively thin-walled elbows. The results demonstrate the effects of pressure and the influence of straight pipe segments. Finally, using the numerical tools, failure of elbows under bending moments is examined (cross-sectional flattening or local buckling), and reference to experimental observations is made.


2012 ◽  
Vol 594-597 ◽  
pp. 2723-2726
Author(s):  
Wen Shan Lin

In the present study, the constitutive law of the deformation theory of plasticity has been derived. And that develop the two-dimensional and three-dimensional finite element program. The results of finite element and analytic of plasticity are compared to verify the derived the constitutive law of the deformation theory and the FEM program. At plastic stage, the constitutive laws of the deformation theory can be expressed as the linear elastic constitutive laws. But, it must be modified by iteration of the secant modulus and the effective Poisson’s ratio. Make it easier to develop finite element program. Finite element solution and analytic solution of plasticity theory comparison show the answers are the same. It shows the derivation of the constitutive law of the deformation theory of plasticity and finite element analysis program is the accuracy.


2012 ◽  
Vol 204-208 ◽  
pp. 1224-1228
Author(s):  
Jun Fen Yang ◽  
Yi Liang Peng ◽  
Xia Bing Wei ◽  
Jin Bo Cui

Tube-plate joint is a frequently-used joint type in steel-tube tower, but the theoretical analysis and experimental investigation on tube-plate joint are absent both at home and abroad. In this paper, the ANSYS finite element program was used to simulate the bearing capacity and deformation condition of tube-plate joint with 1/2-stiffening ring. Eight calculation models were designed, and the width-thickness ratio was changed by changing the width or thickness of stiffening ring. The results indicate that the influence of different width-thickness ratio on tube-plate joint bearing capability is significant. By increasing the width or increasing the thickness of stiffening rings to improve the bearing capacity of the joint is a very effective way.


Sign in / Sign up

Export Citation Format

Share Document