scholarly journals ITO-free Perovskite Light-Emitting Electrochemical Cell

2021 ◽  
Vol 2015 (1) ◽  
pp. 012010
Author(s):  
M Baeva ◽  
D Gets ◽  
E Bodyago ◽  
A Mozharov ◽  
V Neplokh ◽  
...  

Abstract Since Complementary metal–oxide–semiconductor technology is the conventional technology for micro- and optoelectronics, integration of emerging materials, such as halide perovskites, into the process is an important branch of perovskite technologies development. In this regard ITO free device research becomes increasingly important. The Perovskite Light-Emitting electrochemical cells are a promising alternative to conventional Perovskite Light Emitting Diodes. In this work we demonstrate green (λEL = 523 nm) CsPbBr3 Perovskite Light-Emitting electrochemical cells with luminescence intensity of 50 kd/m2 integrated with Si++(111) substrate.

2020 ◽  
Vol 1 (9) ◽  
pp. 3200-3207
Author(s):  
Stephan Steinhauer ◽  
Eva Lackner ◽  
Florentyna Sosada-Ludwikowska ◽  
Vidyadhar Singh ◽  
Johanna Krainer ◽  
...  

SnO2-based chemoresistive sensors integrated in complementary metal-oxide-semiconductor technology were functionalized with ultrasmall Pt nanoparticles, resulting in carbon monoxide sensing properties with minimized humidity interference.


2016 ◽  
Vol 8 (3) ◽  
pp. 399-404 ◽  
Author(s):  
Boris Moret ◽  
Nathalie Deltimple ◽  
Eric Kerhervé ◽  
Baudouin Martineau ◽  
Didier Belot

This paper presents a 60 GHz reconfigurable active phase shifter based on a vector modulator implemented in 65 nm complementary metal–oxide–semiconductor technology. This circuit is based on the recombination of two differential paths in quadrature. The proposed vector modulator allows us to generate a phase shift between 0° and 360°. The voltage gain varies between −13 and −9 dB in function of the phase shift generated with a static consumption between 26 and 63 mW depending on its configuration.


2019 ◽  
Vol 7 (34) ◽  
pp. 10672-10682 ◽  
Author(s):  
Marsel Z. Shafikov ◽  
Shi Tang ◽  
Christian Larsen ◽  
Michael Bodensteiner ◽  
Valery N. Kozhevnikov ◽  
...  

A novel heterodinuclear Ir(iii)/Pt(ii) complex delivers vibrant red phosphorescence with high efficiency in a light-emitting electrochemical cell.


1987 ◽  
Vol 96 (1_suppl) ◽  
pp. 76-79
Author(s):  
J. Génin ◽  
R. Charachon

In a multichannel cochlear prosthesis, electrical interactions between electrodes impose severe limitations on dynamic range and selectivity. We present a theoretical model to cope with these limitations. Building a successful cochlear implant requires full custom-integrated circuits. We present the design of such a device, implemented in complementary metal oxide semiconductor technology. The area of the chip is 9 mm2 and it can stimulate 15 cochlear electrodes with current impulses.


Sign in / Sign up

Export Citation Format

Share Document