scholarly journals Comparison of parallel infill sampling criteria for optimization problems

2021 ◽  
Vol 2030 (1) ◽  
pp. 012067
Author(s):  
Tangtao Feng ◽  
Chen Cong ◽  
Ping Song ◽  
Yongquan Li ◽  
Yi Liao ◽  
...  
Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1631
Author(s):  
Kittisak Chaiyotha ◽  
Tipaluck Krityakierne

Engineering optimization problems often involve computationally expensive black-box simulations of underlying physical phenomena. This paper compares the performance of four constrained optimization algorithms relying on a Gaussian process model and an infill sampling criterion under the framework of Bayesian optimization. The four infill sampling criteria include expected feasible improvement (EFI), constrained expected improvement (CEI), stepwise uncertainty reduction (SUR), and augmented Lagrangian (AL). Numerical tests were rigorously performed on a benchmark set consisting of nine constrained optimization problems with features commonly found in engineering, as well as a constrained structural engineering design optimization problem. Based upon several measures including statistical analysis, our results suggest that, overall, the EFI and CEI algorithms are significantly more efficient and robust than the other two methods, in the sense of providing the most improvement within a very limited number of objective and constraint function evaluations, and also in the number of trials for which a feasible solution could be located.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Cong Chen ◽  
Jiaxin Liu ◽  
Pingfei Xu

AbstractOne of the key issues that affect the optimization effect of the efficient global optimization (EGO) algorithm is to determine the infill sampling criterion. Therefore, this paper compares the common efficient parallel infill sampling criterion. In addition, the pseudo-expected improvement (EI) criterion is introduced to minimizing the predicted (MP) criterion and the probability of improvement (PI) criterion, which helps to improve the problem of MP criterion that is easy to fall into local optimum. An adaptive distance function is proposed, which is used to avoid the concentration problem of update points and also improves the global search ability of the infill sampling criterion. Seven test problems were used to evaluate these criteria to verify the effectiveness of these methods. The results show that the pseudo method is also applicable to PI and MP criteria. The DMP and PEI criteria are the most efficient and robust. The actual engineering optimization problems can more directly show the effects of these methods. So these criteria are applied to the inverse design of RAE2822 airfoil. The results show the criterion including the MP has higher optimization efficiency.


2019 ◽  
Vol 2 (3) ◽  
pp. 508-517
Author(s):  
FerdaNur Arıcı ◽  
Ersin Kaya

Optimization is a process to search the most suitable solution for a problem within an acceptable time interval. The algorithms that solve the optimization problems are called as optimization algorithms. In the literature, there are many optimization algorithms with different characteristics. The optimization algorithms can exhibit different behaviors depending on the size, characteristics and complexity of the optimization problem. In this study, six well-known population based optimization algorithms (artificial algae algorithm - AAA, artificial bee colony algorithm - ABC, differential evolution algorithm - DE, genetic algorithm - GA, gravitational search algorithm - GSA and particle swarm optimization - PSO) were used. These six algorithms were performed on the CEC’17 test functions. According to the experimental results, the algorithms were compared and performances of the algorithms were evaluated.


Sign in / Sign up

Export Citation Format

Share Document