scholarly journals Enhancement of heat transfer for boiling in nanofluid

2021 ◽  
Vol 2039 (1) ◽  
pp. 012030
Author(s):  
S Z Sapozhnikov ◽  
V Yu Mityakov ◽  
A V Pavlov ◽  
P G Bobylev ◽  
Yu V Andreev ◽  
...  

Abstract The paper considers heat transfer during boiling of subcooled water with suspended nanoparticles Al2O3 using a suspension from 0.32% to 4%. On a spherical model, the local heat flux per unit area was measured by the method of gradient heatmetry for model temperature of 464 °C and water temperature of 64 °C. The results are compared with the data obtained at the same temperature conditions for pure water. Enchancement of heat transfer was revealed in the entire concentration range - with a maximum at a particle concentration close to 1%.

Author(s):  
Tom I-Ping Shih ◽  
Srisudarshan Krishna Sathyanarayanan

Convective heat transfer over surfaces is generally presented in the form of the heat-transfer coefficient (h) or its nondimensional form, the Nusselt number (Nu). Both require the specification of the free-stream temperature (Too) or the bulk (Tb) temperature, which are clearly defined only for simple configurations. For complicated configurations with flow separation and multiple temperature streams, the physical significance of Too and Tb becomes unclear. In addition, their use could cause the local h to approach positive or negative infinity if Too or Tb is nearly the same as the local wall temperature (Twall). In this paper, a new Nusselt number, referred to as the SCS number, is proposed, that provides information on the local heat flux but does not use h and hence by-passes the need to define Too or Tb. CFD analysis based on steady RANS with the shear-stress transport model is used to compare and contrast the SCS number with Nu for two test problems: (1) compressible flow and heat transfer in a straight duct with a circular cross section and (2) compressible flow and heat transfer in a high-aspect ratio rectangular duct with a staggered array of pin fins. Parameters examined include: Reynolds number at the duct inlet (3,000 to 15,000 for the circular duct and 15,000 and 150,000 for the rectangular duct), wall temperature (Twall = 373 K to 1473 K for the circular duct and 313 K and 1,173 K for the rectangular duct), and distance from of the inlet of the duct (up to 100D for the circular duct and up to 156D for the rectangular duct). For the circular duct, Nu was found to decrease rapidly from the duct inlet until reaching a minimum and then to rise until reaching a nearly constant value in the “fully” developed region if the wall is heating the gas. If the wall is cooling the gas, then Nu has a constant positive slope in the “fully” developed region. The location of the minimum in Nu and where Nu becomes nearly constant in value or in slope are strong functions of Twall. For the SCS number, the decrease from the duct inlet is monotonic with a negative slope, whether the wall is heating or cooling the gas. Also, different SCS curves for different Twall approach each other as the distance from the inlet increases. For the rectangular duct, Nu tends to oscillate about a constant value in the pin-fin region, whereas SCS tends to oscillate about a line with a negative slope. For both test problems, the variation of SCS is not more complicated than Nu, but SCS yields the local heat flux without need for Tb, a parameter that is hard to define and measure for complicated problems.


Author(s):  
Jungho Lee ◽  
Cheong-Hwan Yu ◽  
Sang-Jin Park

Water spray cooling is an important technology which has been used in a variety of engineering applications for cooling of materials from high-temperature nominally up to 900°C, especially in steelmaking processes and heat treatment in hot metals. The effects of cooling water temperature on spray cooling are significant for hot steel plate cooling applications. The local heat flux measurements are introduced by a novel experimental technique in which test block assemblies with cartridge heaters and thermocouples are used to measure the heat flux distribution on the surface of hot steel plate as a function of heat flux gauge. The spray is produced from a fullcone nozzle and experiments are performed at fixed water impact density of G and fixed nozzle-to-target spacing. The results show that effects of water temperature on forced boiling heat transfer characteristics are presented for five different water temperatures between 5 to 45°C. The local heat flux curves and heat transfer coefficients are also provided to a benchmark data for the actual spray cooling of hot steel plate cooling applications.


1993 ◽  
Vol 115 (2) ◽  
pp. 319-324 ◽  
Author(s):  
J. von Wolfersdorf ◽  
R. Hoecker ◽  
T. Sattelmayer

A transient heat transfer technique using a heating foil and liquid crystals is described. The basic idea is a step-heating technique, eliminating the local heat flux and the surface temperature during the data reduction. Nonuniformities in the heating pattern are allowed and calibration of the liquid crystals is no longer necessary. They are used as an indicator of an isotherm only. The heat transfer coefficient is deduced from two time measurements. The laminar and turbulent boundary layer flows over a flat plate were tested to verify the applicability and accuracy of the method.


2011 ◽  
Vol 201-203 ◽  
pp. 171-175
Author(s):  
Wei Zheng Zhang ◽  
Xiao Liu ◽  
Chang Hu Xiang

The turbulent flow in the near-wall region affects the wall heat transfer dominantly. The farther it is from the wall, the less effect it has. So a two-step mechanism of the turbulent wall heat transfer is released: first, the energy is transferred to the outside of the viscous sub-layer by the rolling of the micro-eddy; secondly, the energy gets to the wall by conduction. Then, a theoretical model of wall heat transfer is developed with this concept. The constant in the model is confirmed by experiment and simulation of the transient turbulent heat transfer in pipe flow. Finally, the model is used to predict the local heat flux under different conditions, and the results agree well with the experimental results as well as the simulation results.


2003 ◽  
Vol 125 (3) ◽  
pp. 503-509 ◽  
Author(s):  
Baris B. Bayazit ◽  
D. Keith Hollingsworth ◽  
Larry C. Witte

Measurements that illustrate the enhancement of heat transfer caused by a bubble sliding under an inclined surface are reported. The data were obtained on an electrically heated thin-foil surface that was exposed on its lower side to FC-87 and displayed the output of a liquid crystal coating on the upper (dry) side. A sequence of digital images was obtained from two cameras: one that recorded the response of the liquid crystal and one that recorded images of the bubble as it moved along the heated surface. With this information, the thermal imprint of the bubble was correlated to its motion and position. A bubble generator that produced FC-87 bubbles of repeatable and controllable size was also developed for this study. The results show that both the microlayer under a sliding bubble and the wake behind the bubble contribute substantially to the local heat transfer rate from the surface. The dynamic behavior of the bubbles corresponded well with studies of the motion of adiabatic bubbles under inclined plates, even though the bubbles in the present study grew rapidly because of heat transfer from the wall and the surrounding superheated liquid. Three regimes of bubble motion were observed: spherical, ellipsoidal and bubble-cap. The regimes depend upon bubble size and velocity. A model of the heat transfer within the microlayer was used to infer the microlayer thickness. Preliminary results indicate a microlayer thickness of 40–50 μm for bubbles in FC-87 and a plate inclination of 12 deg.


1980 ◽  
Vol 102 (4) ◽  
pp. 598-604 ◽  
Author(s):  
H. M. Soliman ◽  
T. S. Chau ◽  
A. C. Trupp

An analysis is presented for fully developed laminar convective heat transfer in tubes with internal longitudinal fins and uniform outside wall temperature. The governing momentum and energy equations were solved numerically, with the influence of fin conductance accounted for by a single parameter. The distributions of fin temperature, fluid temperature and local heat flux (both at the fin and unfinned surfaces) are presented. These are shown to be strongly dependent on finned tube geometry and, in some cases, on the fin conductance parameter as well. Based on average heat transfer per unit area, the various fins proved more effective than the unfinned surfaces. Values for overall Nusselt number indicated significant heat transfer enhancement over smooth tube conditions.


Author(s):  
Tian Yi Song ◽  
Guang Xu Yu ◽  
Xue Hu Ma ◽  
John W. Rose ◽  
Hua Sheng Wang

The paper reports preliminary results from a new research programme for making accurate heat transfer and pressure drop measurements during condensation in microchannels. While commissioning the apparatus a dummy test section was used with identical channel and header geometry to that to be used in the main test program (The final test section will comprise a relatively thick copper test section containing 98 accurately located thermocouples for measuring the temperature distribution from which local heat flux and temperature at the microchannel surface will be obtained). While using the dummy test section (without embedded thermocouples) the opportunity was taken to make accurate pressure drop measurements while measuring the vapor flow rate and total heat transfer rate based on coolant measurements. Data have been obtained for FC72 and steam. Approximate comparisons with available pressure drop calculation methods are presented.


Author(s):  
Sergey Z. Sapozhnikov ◽  
Vladimir Yu. Mityakov ◽  
Andrey V. Mityakov ◽  
Andrey A. Snarskii ◽  
Maxim I. Zhenirovskyy

The local heat flux measurements are limited by low working temperature of the gradient heat flux sensors (GHFS) [1–3]. The novel heterogeneous sensors (HGHFS) made from metal-metal or metal-semiconductor layered composites (so-called anisotropic thermoelements) have high temperature level of 1300 K and more. Theory of the HGHFS allows to choose thickness and angle of inclination for the layers of composite, and to forecast volt-watt sensitivity. The sensitivity of metal-metal sensors is typically on the order of 0.02 to 0.5 mV/W, and it is much beyond when semiconductors are used. HGHFS are used for a first time for heat flux measurements in the furnace of the industrial boiler which is in operating of the Thermal Power Plant (fossil fuel power plant) in the city of Kirov (Russia). The local heat flux at the surface of refractory-faced water wall is measured in different regimes of operating. It is also shown that HGHFS may be used as indicator of furnace slugging. Small sizes (minimally 2×2×0.1 mm) and high working temperature of the HGHFS are useful for heat transfer investigations.


Sign in / Sign up

Export Citation Format

Share Document