scholarly journals Effect of deep cryogenic treatment on microstructure and properties of M35 high speed steel

2021 ◽  
Vol 2044 (1) ◽  
pp. 012014
Author(s):  
Jun Bi ◽  
Liejun Li ◽  
Jihua Peng ◽  
Jingwen Liao ◽  
Yuan Gao
Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Jure Voglar ◽  
Živa Novak ◽  
Patricia Jovičević-Klug ◽  
Bojan Podgornik ◽  
Tadeja Kosec

The aim of the study was to evaluate the corrosion properties of three different grades of high-speed steel following a heat treatment procedure involving deep cryogenic treatment after quenching and to investigate how these properties are connected to the microstructure and hardness of the material. The hardness of steels was measured, and microstructural properties were determined through observation of the metallographically prepared steels using scanning electron microscopy. These studies were complemented corrosion evaluation by the use of corrosion potential measurement and linear polarization measurement of steels in a sodium tetraborate buffer at pH 10. The results showed that the deep cryogenic procedure of high-speed steel changed the microstructure and consequently affected the hardness of the investigated steels to different extents, depending on their chemical composition. Corrosion studies have confirmed that some high-speed steels have improved corrosion properties after deep cryogenic treatment. The most important improvement in corrosion resistance was observed for deep cryogenically treated high-speed steel EN 1.3395 (M3:2) by 31% when hardened to high hardness values and by 116% under lower hardness conditions. The test procedure for differentiating corrosion properties of differently heat-treated tool steels was established alongside the investigation.


2021 ◽  
Vol 1016 ◽  
pp. 1423-1429
Author(s):  
Kaweewat Worasaen ◽  
Andreas Stark ◽  
Karuna Tuchinda ◽  
Piyada Suwanpinij

A matrix type high speed steel YXR3 designed for a combination of wear resistance and toughness is investigated for its mechanical properties after hardening by deep cryogenic treatment follow by tempering. The deep cryogenic quenching carried out at -200 °C for 36 hours and the single step tempering results in an obvious improvement in wear resistance while balancing the toughness, comparing with the conventional quenching followed by a double tempering treatment. The quantitative image analysis reveals little difference in the MC carbide size distribution between tempering at different temperatures. The synchrotron high energy XRD confirms the MC type carbide with some evolution in its orientation together with tempered martensite approaching the BCC structure at higher temperatures. In contrary to the conventional quenching and tempering, the lowest tempering temperature at 200 °C yields a moderate drop in hardness with increase in surface toughness proportionally while exhibiting exceptional wear resistance. Such thermal cycle can be recommended for the industry both for the practicality and improved tool life.


2018 ◽  
Vol 24 (2) ◽  
pp. 187 ◽  
Author(s):  
David Hradil ◽  
Michal Duchek ◽  
Taťána Hrbáčková ◽  
Aleksander Ciski

<p class="AMSmaintext"><span lang="EN-GB">Nitriding with subsequent heat treatment in combination with deep cryogenic treatment (DCT) produces nitrided layers with specific properties. Layers with unique properties result from the dissolution of subsurface layers of iron nitrides and subsequent nitrogen diffusion into the substrate during austenitisation. Fine precipitates of carbonitrides eventually form during DCT and tempering. Intermediate deep cryogenic treatment was performed between the quenching and tempering steps. This work is based on comparing nitrided layers obtained using conventional treatment parameters with nitrided layers from novel processes. The experimental material was DIN 1.3343 (Czech Standard 41 9830) high-speed steel. Several treatment methods were compared in terms of the resulting hardness and metallographic characteristics.</span></p><p> </p>


Author(s):  
M. Pellizzari ◽  
A. Molinari ◽  
L. Girardini ◽  
L. Maldarelli

Sign in / Sign up

Export Citation Format

Share Document