tialn coating
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 27)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 23 (4) ◽  
pp. 47-64
Author(s):  
Atul Kulkarni ◽  
◽  
Satish Chinchanikar ◽  
Vikas Sargade ◽  
◽  
...  

Introduction. During machining, the resulting temperature has a wider and more critical impact on machining performance. During machining, the power consumption is mainly converted into heat near the cutting edge of the tool. Almost all the work performed during plastic deformation turns into heat. Researchers have put a lot of effort into measuring the cutting temperature during machining, as it significantly affects tool life and overall machining performance. The purpose of the work: to investigate the temperature of the chip-tool interface, taking into account the influence of cutting parameters and the type of tool coating during SS304 turning. The chip-tool interface temperature is measured by changing the cutting speed and feed with a constant cutting depth for uncoated and PVD single-layer TiAlN and multi-layer TiN/TiAlN coated carbide tools. In addition, an attempt is made to develop a model for predicting the temperature of the chip-tool interface using dimensional analysis and ANN simulating to better understand the process. The methods of investigation. Experiments are carried out with varying the cutting speed (140-260 m/min), feed (0.08-0.2 mm/rev) and a constant cutting depth of 1 mm. The chip-tool interface temperature is measured using the tool-work thermocouple principle. The Calibration Setup is designed to establish the relationship between the produced electromotive force (EMF) and the cutting temperature during machining. Statistical dimensional analysis and artificial neural network models have been developed to predict the temperature of the chip-tool interface. Tangential cutting force and chip attributes such as chip width and thickness are also measured depending on the cutting conditions, which is a prerequisite for dimensional analysis simulation. Results and Discussion. A tool made of TiAlN carbide with PVD coating had a lower temperature at the chip-tool interface than a tool with TiN/TiAlN coating. It has been observed that the chip-tool interface temperature increases prominently with the cutting speed, followed by the chip cross-sectional area and the specific cutting pressure. However, a lower cutting force was observed when using a carbide tool with a multi-layer TiN/TiAlN coating, which can be attributed to a lower coefficient of friction created by the front surface of this tool for flowing chips. On the other hand, the greatest cutting force was observed in uncoated carbide tools. It was noticed that the developed models allow predicting the temperature of the chip-tool interface with an absolute error of 5%. However, the lowest average absolute error of 0.78% was observed with the ANN model and, therefore, can be reliably used to predict the chip-tool interface temperature during SS304 turning.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 992
Author(s):  
Kenji Yamamoto ◽  
Yuuya Tatsuhira ◽  
Yoshiro Iwai

TiAlN coatings with different Al ratios were deposited by the cathodic arc ion plating (AIP) method, and the relationship between solid particle erosion resistance and structural, mechanical properties was investigated by a micro slurry-jet erosion (MSE) test. The crystal structure of TiAlN coating changes depending on the Al ratio. The coating shows a B1 single cubic phase between the Al ratio of 0 and 0.58; above this ratio, formation of a B4 hexagonal phase is observed. The mechanical properties such as hardness and Young’s modulus of the TiAlN coating also depend on the Al ratio and the crystal structure. The erosion rate decreases by increasing the Al ratio up to 0.58, as the coating is a cubic single phase. The TiAlN coating shows the lowest erosion rate at an Al ratio of 0.58. The erosion rate increases drastically as the crystalline phase changes from the B1 cubic to B4 hexagonal phase at the Al ratio of more than 0.58. The change in erosion rate is also discussed in connection with mechanical properties such as erodent particle hardness to coating hardness ratio and coating hardness to Young’s modulus ratio.


Author(s):  
Xiaolan Han ◽  
Zhanfeng Liu ◽  
Yazhou Feng

Due to the poor processability of 0Cr17Ni4Cu4Nb stainless steel, the inserts are quickly worn down during the cutting process, affecting both the machining accuracy and surface quality of the machined part. In this study, the wear performance of four different types of coated inserts, TiCN+Al2O3, TiAlN, multilayer Ti composite, and TiCN+Al2O3+TiN, were investigated on the external turning of 0Cr17Ni4Cu4Nb stainless steel. The effects of different coatings on insert durability were analyzed from the perspective of wear profile, flank wear, and chip morphology. The wear of the inserts was mainly resulted from abrasive wear, diffusion wear, and adhesive wear. The flank wear ranking from the lowest to the highest for four coated inserts was TiAlN coating, TiCN+Al2O3 coating, TiCN+Al2O3+TiN coating, and multilayer Ti composite coating. The TiAlN coating deposited by physical vapor deposition exhibited excellent high-temperature oxidation resistance and stability, indicating its suitability for the turning of 0Cr17Ni4Cu4Nb stainless steel component. This study provides not only an important guidance for choosing inserts with different coating materials to improve wear performance, but also a good reference on the optimal design of indexable coated inserts for different materials.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Suyang Li ◽  
Haisheng Lin ◽  
Tingjie Zhang ◽  
Jianbo Sui ◽  
Chengyong Wang

AbstractThe coating material of a tool directly affects the efficiency and cost of machining malleable cast iron. However, the machining adaptability of various coating materials to malleable cast iron has been insufficiently researched. In this paper, turning tests were conducted on cemented carbide tools with different coatings (a thick TiN/TiAlN coating, a thin TiN/TiAlN coating, and a nanocomposite (nc) TiAlSiN coating). All coatings were applied by physical vapor deposition. In a comparative study of chip morphology, cutting force, cutting temperature, specific cutting energy, tool wear, and surface roughness, this study analyzed the cutting characteristics of the tools coated with various materials, and established the relationship between the cutting parameters and machining objectives. The results showed that in malleable cast iron machining, the coating material significantly affects the cutting performance of the tool. Among the three tools, the nc-TiAlSiN-coated carbide tool achieved the minimum cutting force, the lowest cutting temperature, least tool wear, longest tool life, and best surface quality. Moreover, in comparisons between cemented-carbide and compacted-graphite cast iron machined under the same conditions, the wear mechanism of the coated tools was found to depend on the cast iron being machined. Therefore, the performance requirements of a tool depend on multiple factors, and selecting an appropriately coated tool for a particular cast iron material is essential.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1330
Author(s):  
Wit Grzesik ◽  
Joanna Małecka

This paper proposes a novel approach to assessing oxidation behavior of TiAlN coatings with defined stoichiometry on the rake and flank surfaces. This is based on the multi-parametric comparison of the oxidation effects detected on the coatings’ surfaces resulting from static diffusion couple tests. In this experimental study the diffusion couples consisting of Ti-based and Ni-based alloys and coated TiAlN cutting inserts are tested, respectively. The optimum oxidation temperature was determined by annealing the selected TiAlN coating in a high temperature chamber at temperatures: 700 °C, 800 °C, 900 °C and 1000 °C in air. Concurrently, the mass change and corresponding thickness of the Al2O3 oxidized layer were measured and computed. The comparison of oxides produced covers the surface morphologies, chemical elements and phases which were analyzed by means of SEM (scanning electron microscope), EDS (energy dispersive spectroscopy) and XRD (X-ray diffraction techniques). Additionally, scratch tests were performed to assess the penetration depth down to the substrate and coating failure mechanism after oxidation in diffusion couples. An acceptable similarity of Al2O3 films formed on the TiAlN coating surfaces in diffusion couples and machining processes was established.


Sign in / Sign up

Export Citation Format

Share Document