scholarly journals Research on the impact coefficient of vehicle wheel load on bridge expansion joint by scale model experiment

2021 ◽  
Vol 2044 (1) ◽  
pp. 012110
Author(s):  
Jiateng Xie ◽  
Yong Ding
Author(s):  
V.V. Zinchenko ◽  
◽  
E.S Fedorenko ◽  
A.V Gorovtsov ◽  
T.M Minkina ◽  
...  

As a result of the model experiment, an increase in the enzymatic activity of meadow chernozem of the impact zone of Ataman Lake with the introduction of a strains mixture of metal-resistant microorganisms into the soil was established. The experiment has shown that the application of bacterial strains increases the dehydrogenase activity of contaminated soil by 51.8% compared to the variant without remediation


2005 ◽  
Vol 49 ◽  
pp. 865-870
Author(s):  
Akinori NAKATA ◽  
Takashi NISHIZAWA ◽  
Junji ONISHI ◽  
Haruo SOEDA

2015 ◽  
Vol 8 (1) ◽  
pp. 421-434 ◽  
Author(s):  
M. P. Jensen ◽  
T. Toto ◽  
D. Troyan ◽  
P. E. Ciesielski ◽  
D. Holdridge ◽  
...  

Abstract. The Midlatitude Continental Convective Clouds Experiment (MC3E) took place during the spring of 2011 centered in north-central Oklahoma, USA. The main goal of this field campaign was to capture the dynamical and microphysical characteristics of precipitating convective systems in the US Central Plains. A major component of the campaign was a six-site radiosonde array designed to capture the large-scale variability of the atmospheric state with the intent of deriving model forcing data sets. Over the course of the 46-day MC3E campaign, a total of 1362 radiosondes were launched from the enhanced sonde network. This manuscript provides details on the instrumentation used as part of the sounding array, the data processing activities including quality checks and humidity bias corrections and an analysis of the impacts of bias correction and algorithm assumptions on the determination of convective levels and indices. It is found that corrections for known radiosonde humidity biases and assumptions regarding the characteristics of the surface convective parcel result in significant differences in the derived values of convective levels and indices in many soundings. In addition, the impact of including the humidity corrections and quality controls on the thermodynamic profiles that are used in the derivation of a large-scale model forcing data set are investigated. The results show a significant impact on the derived large-scale vertical velocity field illustrating the importance of addressing these humidity biases.


Author(s):  
Kusalika Ariyarathne ◽  
Kuang-An Chang ◽  
Richard Mercier

Impact pressure due to plunging breaking waves impinging on a simplified model structure was investigated in the laboratory based on two breaking wave conditions: the wall impingement wave condition and the deck impingement wave condition. Pressure, void fraction, and velocities were measured at various locations on the deck surface. Impact pressure was correlated with the mean kinetic energy calculated based on the measured mean velocities and void fraction to obtain the impact coefficient. For the wall impingement wave condition, the relationship between impact pressure and mean kinetic energy is linear with the impact coefficient close to unity. For the deck impingement wave condition, the above relationship does not show good correlation, whereas the impact coefficient was found to be a function of the rate of pressure rise.


2006 ◽  
Vol 134 (12) ◽  
pp. 3644-3656 ◽  
Author(s):  
Robert Pincus ◽  
Richard Hemler ◽  
Stephen A. Klein

Abstract A new method for representing subgrid-scale cloud structure in which each model column is decomposed into a set of subcolumns has been introduced into the Geophysical Fluid Dynamics Laboratory’s global atmospheric model AM2. Each subcolumn in the decomposition is homogeneous, but the ensemble reproduces the initial profiles of cloud properties including cloud fraction, internal variability (if any) in cloud condensate, and arbitrary overlap assumptions that describe vertical correlations. These subcolumns are used in radiation and diagnostic calculations and have allowed the introduction of more realistic overlap assumptions. This paper describes the impact of these new methods for representing cloud structure in instantaneous calculations and long-term integrations. Shortwave radiation computed using subcolumns and the random overlap assumption differs in the global annual average by more than 4 W m−2 from the operational radiation scheme in instantaneous calculations; much of this difference is counteracted by a change in the overlap assumption to one in which overlap varies continuously with the separation distance between layers. Internal variability in cloud condensate, diagnosed from the mean condensate amount and cloud fraction, has about the same effect on radiative fluxes as does the ad hoc tuning accounting for this effect in the operational radiation scheme. Long simulations with the new model configuration show little difference from the operational model configuration, while statistical tests indicate that the model does not respond systematically to the sampling noise introduced by the approximate radiative transfer techniques introduced to work with the subcolumns.


Author(s):  
Huiyun Li ◽  
Guangyu Shi

The steel plate reinforced concrete (SC) walls and roofs are effective protective structures in nuclear power plants against aircraft attacks. The mechanical behavior of the concrete in SC panels is very complicated when SC panels are under the action of impacting loading. This paper presents a dynamic material model for concrete subjected to high-velocity impact, in which pressure hardening, strain rate effect, plastic damage, and tensile failure are taken into account. The loading surface of the concrete undergoing plastic deformation is defined based on the extended Drucker–Prager strength criterion and the Johnson–Cook material model. The associated plastic flow rule is utilized to evaluate plastic strains. Two damage parameters are introduced to characterize, respectively, the plastic damage and tensile failure of concrete. The proposed concrete model is implemented into the transient nonlinear dynamic analysis code ls-dyna. The reliability and accuracy of the present concrete material model are verified by the numerical simulations of standard compression and tension tests with different confining pressures and strain rates. The numerical simulation of the impact test of a 1/7.5-scale model of an aircraft penetrating into a half steel plate reinforced concrete (HSC) panel is carried out by using ls-dyna with the present concrete model. The resulting damage pattern of concrete slab and the predicted deformation of steel plate in the HSC panel are in good agreement with the experimental results. The numerical results illustrate that the proposed concrete model is capable of properly charactering the tensile damage and failure of concrete.


1983 ◽  
Vol 105 (4) ◽  
pp. 719-725 ◽  
Author(s):  
M. A. Hebbar ◽  
C. E. Sessions

The impact of Materials and Processes (M and P) development activities at the Nuclear Components Division - Breeder Reactor Components Project of Westinghouse are described. Nine specific M and P programs have been performed over the past five years and the conclusions drawn from each are summarized herein. These engineering activities could be classified as component design, fabrication, and testing results. However, the discussion presented is from a materials engineer’s viewpoint as to how the previously proposed development tasks have answered existing questions about either design, manufacturing, or plant operation. The nine areas which are discussed include (i) double-wall tubing, (ii) tube-to-tubesheet welding, (iii) few tube model fabrication and testing, (iv) tube support plates, (v) shell welding, (vi) convoluted shell expansion joint, (vii) water chemistry and corrosion behavior, (viii) chemical cleaning, and (ix) surface contamination protection.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Fei Guo ◽  
Heng Cai ◽  
Huifang Li

In the current vehicle-bridge dynamics research studies, displacement impact coefficients are often used to replace the moment and shear force impact coefficients, and the vehicle model is also simplified as a moving-load model without considering the contribution of vehicle stiffness and damping to the system in some concerned research studies, which cannot really reflect the mechanical behavior of the structures under vehicle dynamic loads. This paper presents a vehicle-bridge coupling model for the prediction of dynamic responses and impact coefficient of the long-span curved bending beam bridge. The element stiffness matrix and mass matrix of a curved box girder bridge with 9 freedom degrees are directly deduced based on the principle of virtual work and dynamic finite element theory. The vibration equations of vehicle-bridge coupling are established by introducing vehicle mode with 7 freedom degrees. The Newmark-β method is adopted to solve vibration response of the system under vehicle dynamic loads, and the influences of flatness of bridge surface, vehicle speed, load weight, and primary beam stiffness on the impact coefficient are comprehensively discussed. The results indicate that the impact coefficient presents a nonlinear increment as the flatness of bridge surface changes from good to terrible. The vehicle-bridge coupling system resonates when the vehicle speeds reach 60 km/h and 100 km/h. The moment design value will maximally increase by 2.89%, and the shear force design value will maximally decrease by 34.9% when replacing moment and shear force impact coefficients with the displacement impact coefficient for the section internal force design. The load weight has a little influence on the impact coefficient; the displacement and moment impact coefficients are decreased with an increase in primary beam stiffness, while the shear force impact coefficient is increased with an increase in primary beam stiffness. The theoretical results presented in this paper agree well with the ANSYS results.


2018 ◽  
pp. 23-40 ◽  
Author(s):  
G. V. Vindeker ◽  
E. Yu. Prudnikova ◽  
I. Yu. Savin

During the model experiment we exposed samples from surface layer of leached chernozem, grey forest and soddy-podzolic soils to study the impact of raindrop action on their surface. According to our results, surface of leached chernozem and grey forest soil transformed similarly forming the crust separated by the cracks. The crust consisted of light (washed silt fraction) and dark (compacted fine material) areas. As for the soddy-podzilic soil, we observed surface accumulation of sand and washed mineral grains. Surface image classification showed that cracks generally tended to increase in area during the surface drying. However, leached chernozem cracked quicker and heavier compared to grey forest soil. In addition, the proportion between light and dark areas of the crust for these two types of soil changed differently as well. In conditions of different transformation cycles divided by heavy rainfalls, the changes of cracks position and the increase of light crust area was observed, while dark area moved to the cracks. Such spatial rearrangement resulted in the increase of average reflectance in RGB channels. The inequality between reflectance in different channels increased as well. During the experiment significant surface lightening occurred. It mainly affected the light area of crust and led to significant rise in reflectance in red channel.


Sign in / Sign up

Export Citation Format

Share Document