scholarly journals Using Stochastically Generated Subcolumns to Represent Cloud Structure in a Large-Scale Model

2006 ◽  
Vol 134 (12) ◽  
pp. 3644-3656 ◽  
Author(s):  
Robert Pincus ◽  
Richard Hemler ◽  
Stephen A. Klein

Abstract A new method for representing subgrid-scale cloud structure in which each model column is decomposed into a set of subcolumns has been introduced into the Geophysical Fluid Dynamics Laboratory’s global atmospheric model AM2. Each subcolumn in the decomposition is homogeneous, but the ensemble reproduces the initial profiles of cloud properties including cloud fraction, internal variability (if any) in cloud condensate, and arbitrary overlap assumptions that describe vertical correlations. These subcolumns are used in radiation and diagnostic calculations and have allowed the introduction of more realistic overlap assumptions. This paper describes the impact of these new methods for representing cloud structure in instantaneous calculations and long-term integrations. Shortwave radiation computed using subcolumns and the random overlap assumption differs in the global annual average by more than 4 W m−2 from the operational radiation scheme in instantaneous calculations; much of this difference is counteracted by a change in the overlap assumption to one in which overlap varies continuously with the separation distance between layers. Internal variability in cloud condensate, diagnosed from the mean condensate amount and cloud fraction, has about the same effect on radiative fluxes as does the ad hoc tuning accounting for this effect in the operational radiation scheme. Long simulations with the new model configuration show little difference from the operational model configuration, while statistical tests indicate that the model does not respond systematically to the sampling noise introduced by the approximate radiative transfer techniques introduced to work with the subcolumns.

2015 ◽  
Vol 8 (1) ◽  
pp. 421-434 ◽  
Author(s):  
M. P. Jensen ◽  
T. Toto ◽  
D. Troyan ◽  
P. E. Ciesielski ◽  
D. Holdridge ◽  
...  

Abstract. The Midlatitude Continental Convective Clouds Experiment (MC3E) took place during the spring of 2011 centered in north-central Oklahoma, USA. The main goal of this field campaign was to capture the dynamical and microphysical characteristics of precipitating convective systems in the US Central Plains. A major component of the campaign was a six-site radiosonde array designed to capture the large-scale variability of the atmospheric state with the intent of deriving model forcing data sets. Over the course of the 46-day MC3E campaign, a total of 1362 radiosondes were launched from the enhanced sonde network. This manuscript provides details on the instrumentation used as part of the sounding array, the data processing activities including quality checks and humidity bias corrections and an analysis of the impacts of bias correction and algorithm assumptions on the determination of convective levels and indices. It is found that corrections for known radiosonde humidity biases and assumptions regarding the characteristics of the surface convective parcel result in significant differences in the derived values of convective levels and indices in many soundings. In addition, the impact of including the humidity corrections and quality controls on the thermodynamic profiles that are used in the derivation of a large-scale model forcing data set are investigated. The results show a significant impact on the derived large-scale vertical velocity field illustrating the importance of addressing these humidity biases.


2021 ◽  
Vol 13 (19) ◽  
pp. 10762
Author(s):  
Thien Khai Tran ◽  
Hoa Dinh ◽  
Hien Nguyen ◽  
Dac-Nhuong Le ◽  
Dong-Ky Nguyen ◽  
...  

The COVID-19 pandemic, since its beginning in December 2019, has altered every aspect of human life. In Vietnam, the pandemic is in its fourth peak and is the most serious so far, putting Vietnam in the list of top 30 countries with the highest daily cases. In this paper, we wish to identify the magnitude of its impact on college students in Vietnam. As far as we’re concerned, college students belong to the most affected groups in the population, especially in big cities that have been hitting hard by the virus. We conducted an online survey from 31 May 2021 to 9 June 2021, asking students from four representative regions in Vietnam to describe how the pandemic has changed their lifestyle and studying environment, as well as their awareness, compliance, and psychological state. The collected answers were processed to eliminate unreliable ones then prepared for sentiment analysis. To analyze the relationship among the variables, we performed a variety of statistical tests, including Shapiro–Wilk, Mc Nemar, Mann–Whitney–Wilcoxon, Kruskal–Wallis, and Pearson’s Chi-square tests. Among 1875 students who participated, many did not embrace online education. A total of 64.53% of them refused to think that online education would be the upcoming trend. During the pandemic, nearly one quarter of students were in a negative mood. About the same number showed signs of depression. We also observed that there were increasing patterns in sleeping time, body weight, and sedentary lifestyle. However, they maintained a positive attitude toward health protection and compliance with government regulations (65.81%). As far as we know, this is the first project to conduct such a large-scale survey analysis on students in Vietnam. The findings of the paper help us take notice of financial and mental needs and perspective issues for indigent students, which contributes to reducing the pandemic’s negative effects and going forwards to a better and more sustainable life.


1996 ◽  
Vol 14 (8) ◽  
pp. 845-852 ◽  
Author(s):  
P. F. Coley ◽  
P. R. Jonas

Abstract. The effects of cloud shadowing, channelling, cloud side illumination and droplet concentration are investigated with regard to the reflection of shortwave solar radiation. Using simple geometric clouds, coupled with a Monte Carlo model the transmission properties of idealized cloud layers are found. The clouds are illuminated with direct solar radiation from above. The main conclusion reached is that the distribution of the cloud has a very large influence on the reflectivity of a cloud layer. In particular, if the cloud contains vertical gaps through the cloud layer in which the liquid water content is zero, then, smaller more numerous gaps are more influential on the radiation than fewer, larger gaps with equal cloud fraction. At very low solar zenith angles channelling of the radiation reduces the reflection expected on the basis of the percentage cloud cover. At high solar zenith angles the illumination of the cloud edges significantly increases the reflection despite the shadowing of one cloud by another when the width of the gaps is small. The impact of droplet concentration upon the reflection of cloud layers is also investigated. It is found that at low solar zenith angles where channelling is important, the lower concentrations increase the transmission. Conversely, when cloud edge illumination is dominant the cloud distribution is found to be more important for the higher concentrations.


2018 ◽  
Vol 18 (14) ◽  
pp. 10177-10198 ◽  
Author(s):  
Sonya L. Fiddes ◽  
Matthew T. Woodhouse ◽  
Zebedee Nicholls ◽  
Todd P. Lane ◽  
Robyn Schofield

Abstract. Natural aerosol emission represents one of the largest uncertainties in our understanding of the radiation budget. Sulfur emitted by marine organisms, as dimethyl sulfide (DMS), constitutes one-fifth of the global sulfur budget and yet the distribution, fluxes and fate of DMS remain poorly constrained. This study evaluates the Australian Community Climate and Earth System Simulator (ACCESS) United Kingdom Chemistry and Aerosol (UKCA) model in terms of cloud fraction, radiation and precipitation, and then quantifies the role of DMS in the chemistry–climate system. We find that ACCESS-UKCA has similar cloud and radiation biases to other global climate models. By removing all DMS, or alternatively significantly enhancing marine DMS, we find a top of the atmosphere radiative effect of 1.7 and −1.4 W m−2 respectively. The largest responses to these DMS perturbations (removal/enhancement) are in stratiform cloud decks in the Southern Hemisphere's eastern ocean basins. These regions show significant differences in low cloud (-9/+6 %), surface incoming shortwave radiation (+7/-5 W m−2) and large-scale rainfall (+15/-10 %). We demonstrate a precipitation suppression effect of DMS-derived aerosol in stratiform cloud deck regions due to DMS, coupled with an increase in low cloud fraction. The difference in low cloud fraction is an example of the aerosol lifetime effect. Globally, we find a sensitivity of temperature to annual DMS flux of 0.027 and 0.019 K per Tg yr−1 of sulfur, respectively. Other areas of low cloud formation, such as the Southern Ocean and stratiform cloud decks in the Northern Hemisphere, have a relatively weak response to DMS perturbations. We highlight the need for greater understanding of the DMS–climate cycle within the context of uncertainties and biases of climate models as well as those of DMS–climate observations.


2014 ◽  
Vol 18 (2) ◽  
pp. 691-708 ◽  
Author(s):  
J. Boé ◽  
F. Habets

Abstract. In this article, multi-decadal variations in the French hydroclimate are investigated, with a specific focus on river flows. Based on long observed series, it is shown that river flows in France generally exhibit large multi-decadal variations in the instrumental period (defined in this study as the period from the late 19th century to the present), especially in spring. Differences of means between 21 yr periods of the 20th century as large as 40% are indeed found for many gauging stations. Multi-decadal spring river flow variations are associated with variations in spring precipitation and temperature. These multi-decadal variations in precipitation are themselves found to be driven by large-scale atmospheric circulation, more precisely by a multi-decadal oscillation in a sea level pressure dipole between western Europe and the eastern Atlantic. It is suggested that the Atlantic Multidecadal Variability, the main mode of multi-decadal variability in the North Atlantic–Europe sector, controls those variations in large-scale circulation and is therefore the main ultimate driver of multi-decadal variations in spring river flows. Potential multi-decadal variations in river flows in other seasons, and in particular summer, are also noted. As they are not associated with significant surface climate anomalies (i.e. temperature, precipitation) in summer, other mechanisms are investigated based on hydrological simulations. The impact of climate variations in spring on summer soil moisture, and the impact of soil moisture in summer on the runoff-to-precipitation ratio, could potentially play a role in multi-decadal summer river flow variations. The large amplitude of the multi-decadal variations in French river flows suggests that internal variability may play a very important role in the evolution of river flows during the next decades, potentially temporarily limiting, reversing or seriously aggravating the long-term impacts of anthropogenic climate change.


2008 ◽  
Vol 136 (4) ◽  
pp. 1349-1372 ◽  
Author(s):  
Katherine M. LaCasse ◽  
Michael E. Splitt ◽  
Steven M. Lazarus ◽  
William M. Lapenta

Abstract High- and low-resolution sea surface temperature (SST) analysis products are used to initialize the Weather Research and Forecasting (WRF) Model for May 2004 for short-term forecasts over Florida and surrounding waters. Initial and boundary conditions for the simulations were provided by a combination of observations, large-scale model output, and analysis products. The impact of using a 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) SST composite on subsequent evolution of the marine atmospheric boundary layer (MABL) is assessed through simulation comparisons and limited validation. Model results are presented for individual simulations, as well as for aggregates of easterly- and westerly-dominated low-level flows. The simulation comparisons show that the use of MODIS SST composites results in enhanced convergence zones, earlier and more intense horizontal convective rolls, and an increase in precipitation as well as a change in precipitation location. Validation of 10-m winds with buoys shows a slight improvement in wind speed. The most significant results of this study are that 1) vertical wind stress divergence and pressure gradient accelerations across the Florida Current region vary in importance as a function of flow direction and stability and 2) the warmer Florida Current in the MODIS product transports heat vertically and downwind of this heat source, modifying the thermal structure and the MABL wind field primarily through pressure gradient adjustments.


Foods ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 102 ◽  
Author(s):  
Kathryn Racine ◽  
Andrew Lee ◽  
Brian Wiersema ◽  
Haibo Huang ◽  
Joshua Lambert ◽  
...  

Cocoa is a concentrated source of dietary flavanols—putative bioactive compounds associated with health benefits. It is known that fermentation and roasting reduce levels of native flavonoids in cocoa, and it is generally thought that this loss translates to reduced bioactivity. However, the mechanisms of these losses are poorly understood, and little data exist to support this paradigm that flavonoid loss results in reduced health benefits. To further facilitate large-scale studies of the impact of fermentation on cocoa flavanols, a controlled laboratory fermentation model system was increased in scale to a large (pilot) scale system. Raw cocoa beans (15 kg) were fermented in 16 L of a simulated pulp media in duplicate for 168 h. The temperature of the fermentation was increased from 25–55 °C at a rate of 5 °C/24 h. As expected, total polyphenols and flavanol levels decreased as fermentation progressed (a loss of 18.3% total polyphenols and 14.4% loss of total flavanols during fermentation) but some increases were observed in the final timepoints (120–168 h). Fermentation substrates, metabolites and putative cocoa bioactive compounds were monitored and found to follow typical trends for on-farm cocoa heap fermentations. For example, sucrose levels in pulp declined from >40 mg/mL to undetectable at 96 h. This model system provides a controlled environment for further investigation into the potential for optimizing fermentation parameters to enhance the flavanol composition and the potential health benefits of the resultant cocoa beans.


2019 ◽  
Vol 119 (8) ◽  
pp. 1691-1711 ◽  
Author(s):  
Shoufeng Cao ◽  
Kim Bryceson ◽  
Damian Hine

Purpose Supply chain risks (SCRs) do not work in isolation and have impact both on each member of a chain and the performance of the entire supply chain. The purpose of this paper is to quantitatively assess the impact of dynamic risk propagation within and between integrated firms in global fresh produce supply chains. Design/methodology/approach A risk propagation ontology-based Bayesian network (BN) model was developed to measure dynamic SCR propagation. The proposed model was applied to a two-tier Australia-China table grape supply chain (ACTGSC) featured with an upstream Australian integrated grower and exporter and a downstream Chinese integrated importer and online retailer. Findings An ontology-based BN can be generated to accurately represent the risk domain of interest using the knowledge and inference capabilities inherent in a risk propagation ontology. In addition, the analyses revealed that supply discontinuity, product inconsistency and/or delivery delay originating in the upstream firm can propagate to increase the downstream firm’s customer value risk and business performance risk. Research limitations/implications The work was conducted in an Australian-China table grape supply chain, so results are only product chain-specific in nature. Additionally, only two state values were considered for all nodes in the model, and finally, while the proposed methodology does provide a large-scale risk network map, it may not be appropriate for a large supply chain network as it only follows the process flow of a single supply chain. Practical implications This study supports the backward-looking traceability of risk root causes through the ACTGSC and the forward-looking prediction of risk propagation to key risk performance measures. Social implications The methodology used in this paper provides an evidence-based decision-making capability as part of a system-wide risk management approach and fosters collaborative SCR management, which can yield numerous societal benefits. Originality/value The proposed methodology addresses the challenges in using a knowledge-based approach to develop a BN model, particularly with a large-scale model and integrates risk and performance for a holistic risk propagation assessment. The combination of modelling approaches to address the issue is unique.


2014 ◽  
Vol 71 (4) ◽  
pp. 1241-1259 ◽  
Author(s):  
Christopher Melhauser ◽  
Fuqing Zhang

Abstract Through convection-permitting ensemble and sensitivity experiments, this study examines the impact of the diurnal radiation cycle on the pregenesis environment of Hurricane Karl (2010). It is found that the pregenesis environmental stability and the intensity of deep moist convection can be considerably modulated by the diurnal extremes in radiation. Nighttime destabilization of the local and large-scale environment through radiative cooling may promote deep moist convection and increase the genesis potential, likely enhancing the intensity of the resultant tropical cyclones. Modified longwave and shortwave radiation experiments found tropical cyclone development to be highly sensitive to the periodic cycle of heating and cooling, with suppressed formation in the daytime-only and no-radiation experiments and quicker intensification compared with the control for nighttime-only experiments.


2015 ◽  
Vol 8 (2) ◽  
pp. 2053-2100 ◽  
Author(s):  
S. Garrigues ◽  
A. Olioso ◽  
D. Carrer ◽  
B. Decharme ◽  
E. Martin ◽  
...  

Abstract. Generic land surface models are generally driven by large-scale forcing datasets to describe the climate, the surface characteristics (soil texture, vegetation dynamic) and the cropland management (irrigation). This paper investigates the errors in these forcing variables and their impacts on the evapotranspiration (ET) simulated from the Interactions between Soil, Biosphere, and Atmosphere (ISBA-A-gs) land surface model over a 12 year Mediterranean crop succession. We evaluate the forcing datasets used in the standard implementation of ISBA over France where the model is driven by the SAFRAN high spatial resolution atmospheric reanalysis, the Leaf Area Index (LAI) cycles derived from the Ecoclimap-II land surface parameter database and the soil texture derived from the French soil database. For climate, we focus on the radiations and rainfall variables and we test additional datasets which includes the ERA-Interim low spatial resolution reanalysis, the Global Precipitation Climatology Centre dataset (GPCC) and the MeteoSat Second Generation (MSG) satellite estimate of downwelling shortwave radiations. The methodology consists in comparing the simulation achieved using large-scale forcing datasets with the simulation achieved using local observations for each forcing variable. The relative impacts of the forcing variables on simulated ET are compared with each other and with the model uncertainties triggered by errors in soil parameters. LAI and the lack of irrigation in the simulation generate the largest mean deviations in ET between the large-scale and the local-scale simulations (equivalent to 24 and 19 months of ET over 12 yr). The climate induces smaller mean deviations equivalent to 7–8 months of ET over 12 yr. The soil texture has the lowest impact (equivalent to 3 months of ET). However, the impact of errors in the forcing variables is smaller than the impact triggered by errors in the soil parameters (equivalent to 27 months of ET). The absence of irrigation which represents 18% of cumulative rainfall over 12 years induces a deficit in ET of 14%. It generates much larger variations in incoming water for the model than the differences in rainfall between the reanalysis datasets. ET simulated with the Ecoclimap-II LAI climatology is overestimated by 18% over 12 years. This is related to the overestimation of the mean LAI over the crop cycle which reveals inaccurate representation of Mediterranean crop cycles. Compared to SAFRAN, the use of the ERA-I reanalysis, the GPCC rainfall and the downwelling shortwave radiation derived from the MSG satellite have little influence on the ET simulation performances. The error in yearly ET is mainly driven by the error in yearly rainfall and to a less extent by radiations. The SAFRAN and MSG satellite shortwave radiation estimates show similar negative biases (−9 and −11 W m−2). The ERA-I bias in shortwave radiations is 4 times smaller at daily time scale. Both SAFRAN and ERA-I underestimate longwave downwelling radiations by −12 and −16 W m−2, respectively. The biases in shortwave and longwave radiations show larger inter-annual variation for SAFRAN than for ERA-I. Regarding rainfall, SAFRAN and ERA-I/GPCC are slightly biased at daily and longer time scales (1 and 0.5% of the mean rainfall measurement). The SAFRAN rainfall estimates are more precise due to the use of the in situ daily rainfall measurements of the Avignon site in the reanalysis.


Sign in / Sign up

Export Citation Format

Share Document