scholarly journals Evaluation of thermal control performance of phase change materials for thermal shock protection of electronics

2021 ◽  
Vol 2045 (1) ◽  
pp. 012032
Author(s):  
X H Yang ◽  
C H Huang ◽  
H B Ke ◽  
L Chen ◽  
P Song

Abstract Phase change materials have important application value in the fields of heat storage, cold storage, and thermal shock protection of electronic chips. In particular, in the field of chip thermal shock protection, phase change materials can use the solid-liquid phase change process to absorb a large amount of latent heat, thereby suppressing the temperature rise of the chip and preventing it from overheating. At present, there are mainly three types of common phase change materials: organic, inorganic and metallic phase change materials. There exists significant difference in the thermophysical properties of the three types of materials, and their thermal control performance also have their own characteristics. This paper sorts out the main thermophysical data of the three types of phase change materials. Through theoretical modeling and analysis, the thermal control performance of these materials is quantitatively evaluated and compared. For typical chip thermal shock conditions, the three types of phase change materials are compared, and their typical characteristics are intuitively displayed. The research results can serve as value reference for the development of phase change thermal control technology for chips.

2021 ◽  
Vol 1016 ◽  
pp. 813-818
Author(s):  
Zi Wei Li ◽  
Elisabetta Gariboldi

Coarse form-stable phase change materials (FS-PCMs) can tailor the properties of pure PCMs. This is often attained by the presence of high-melting, high-thermal conductivity metallic phase which enhances the thermal energy storage/release. The evaluation of the thermal response of these composite materials in unsteady conditions, is not an easy task, and simplifications introduced to deal with them must be carefully considered. A set of FS-PCMs of prismatic geometry with polymeric wax as PCM and an Al foam with various pore sizes, modelled as BCC lattice has been considered in this paper. The thermal response under a set of boundary conditions with constant heat flux at the bottom surface, all other being adiabatic, was investigated both by direct simulations approach modelling the two phases and the ‘1-temperature model’, which considers the material as homogeneous and characterized by a proper set of effective properties. The ‘1-temperature model’ is able to closely reproduce the whole the local thermal history only within certain validity ranges, even if it can well reproduce the ‘average’ energy storage due to the transformation of the PCM phase.


1997 ◽  
Vol 119 (1) ◽  
pp. 40-50 ◽  
Author(s):  
D. Pal ◽  
Y. K. Joshi

A computational model is developed to predict the performance of phase change materials(PCMs) for passive thermal control of electronic modules during transient power variations or following an active cooling system failure. Two different ways of incorporating PCM in the module are considered. One is to place a laminate of PCM outside the multichip module, and the other is to place the PCM laminate between the substrate and the cold plate. Two different types of PCMs are considered. One is n-Eicosene, which is an organic paraffin, and the other one is a eutectic alloy of Bi/Pb/Sn/In. Computations are performed in three dimensions using a finite volume method. A single domain fixed grid enthalpy porosity method is used to model the effects of phase change. Effects of natural convection on the performance of PCM are also examined. Results are presented in the form of time-wise variations of maximum module temperature, isotherm contours, velocity vectors, and melt front locations. Effects of PCM laminate thickness and power levels are studied to assess the amount of PCM required for a particular power level. The results show that the PCMs are an effective option for passive cooling of high density electronic modules for transient periods.


Author(s):  
Xin Li ◽  
Ikken Sato ◽  
Akifumi Yamaji ◽  
Guangtao Duan

Molten corium-concrete interaction (MCCI) is an important ex-vessel phenomenon that could happen during the late phase of a hypothetical severe accident in a light water reactor. When the molten corium, which is generally comprised of UO2, ZrO2 and metals such as zircalloy and stainless steel, is discharged into a dry reactor cavity, a stratified molten pool configuration with two immiscible oxidic and metallic phases can be expected to form and lead to MCCI. Compared to a homogenous oxidic molten pool configuration, the metallic phase in the stratified molten pool might influence the crust formation on the corium-concrete interface and consequently cause different concrete ablation behavior to evaluate MCCI progression concerning containment failure. In terms of this issue, past experimental studies, such as COMET-L, VULCANO VBS and MOCKA test series, have been carried out to investigate the influence of such oxidic and metallic stratified pool configuration on MCCI. The experimental results have shown that the metallic phase can have a significant impact on the axial and radial ablation kinetics that could influence the ablation patterns of reactor pit. As regards numerical studies, past numerical modeling of MCCI was generally based on Eulerian methods and simplified empirical approach to simulate solid/liquid phase change and evolving of corium/crust/concrete interface. Such modeling might be efficient but have shown deficiencies and inadequacies due to its Eulerian and empirical nature, which has suggested a necessity to seek for a more mechanistic approach for modeling of MCCI. In this sense, Moving Particle Semi-implicit (MPS) method is considered suitable for MCCI analysis for its advantages of tracking interfaces and modeling phase change accurately as a Lagrangian particle method. In the present study, a three-dimensional (3-D) numerical study has been performed to simulate COMET-L3 test carried out by KIT with a stratified molten pool configuration of simulant materials with improved MPS method. Solid/liquid phase change was simulated with types of solid and liquid particles with thermal and physical properties including temperature and solid fraction, which enabled tracking of the solid/liquid status of each particle to achieve accurate free surface and corium/crust/concrete interface capturing. The heat transfer between corium/crust/concrete was modeled with heat conduction between particles. Moreover, the potential influence of the siliceous aggregates was also investigated by setting up two different case studies since there was previous study indicating that siliceous aggregates in siliceous concrete might contribute to different axial and radial concrete ablation rates. The simulation results have indicated that metal melt as corium in MCCI can have completely different characteristics regarding concrete ablation pattern from that of oxidic corium, which needs to be taken into consideration when assessing the containment melt-through time in severe accident management.


Author(s):  
Chao He ◽  
Chong Qiao ◽  
Zhe Yang ◽  
Weiming Cheng ◽  
Hao Tong ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4474 ◽  
Author(s):  
Hamidreza Shabgard ◽  
Weiwei Zhu ◽  
Amir Faghri

A mathematical model based on the integral method is developed to solve the problem of conduction-controlled solid–liquid phase change in annular geometries with temperature gradients in both phases. The inner and outer boundaries of the annulus were subject to convective, constant temperature or adiabatic boundary conditions. The developed model was validated by comparison with control volume-based computational results using the temperature-transforming phase change model, and an excellent agreement was achieved. The model was used to conduct parametric studies on the effect of annuli geometry, thermophysical properties of the phase change materials (PCM), and thermal boundary conditions on the dynamics of phase change. For an initially liquid PCM, it was found that increasing the radii ratio increased the total solidification time. Also, increasing the Biot number at the cooled (heated) boundary and Stefan number of the solid (liquid) PCM, decreased (increased) the solidification time and resulted in a greater (smaller) solid volume fraction at steady state. The application of the developed method was demonstrated by design and analysis of a PCM–air heat exchanger for HVAC systems. The model can also be easily employed for design and optimization of annular PCM systems for all associated applications in a fraction of time needed for computational simulations.


Sign in / Sign up

Export Citation Format

Share Document